
AI + Jupyter for Satellite
Meteorology

A Practical Workflow for
Training & Product Prototyping

Dr. Marcial Garbanzo-Salas
Professor at University of Costa Rica
VLab TSO
CALMet 2025

Why AI? Why Now?

AI accelerates coding, visualization, and teaching.

Satellite datasets are becoming richer (ABI, MTG, GLM, etc.).

Trainers and developers need faster prototyping workflows.

Because
it works!

What AI cannot do (yet)

Meaning

• It does not understand (some) physical
meaning.

Errors

• It produces errors and
hallucinations (sometimes).

Maintenance

• Code is often not maintainable without
refactoring (if not created correctly)

Mentoring

• We must guide it with good prompts (always).

What AI can do
Generate initial code for download, analysis or visualization

Refactor messy code into clean, reusable functions

Produce documentation, comments, and explanations

Suggest workflows, steps, and best practices

Create training materials (notebooks, exercises, prompts)

Assist with debugging and identifying potential errors

What AI can do in Satellite Meteorology
➢Generate code to open and explore satellite data

(GOES, MTG, Himawari).
➢Build quick visual products (RGBs, enhancements,

animations).
➢Clean and refactor scripts into training-ready

notebooks.
➢Prototype new product ideas quickly.

➢Add documentation, comments, and explanations.
➢Cross-check results using multiple AI models.

The AI Prompt
Framework Clarity & Specificity

Context

Format

Tone & Level of Detail

Step-by-step instructions

Constraints / Limits

Iteration bring you results!

“Standards” for
AI-Generated Code (1/2)

• Code Style & Structure: Follow PEP8, use small functions, consistent
naming.

• Maintainability: Add docstrings, type hints, clear comments, and avoid
global variables.

• Diagnostics: Use logging, validate inputs, include meaningful try/except.
• Operational Readiness: Keep dependencies minimal, separate config from

logic, ensure reproducibility.
• Scientific Integrity: Check physical meaning; compare results with multiple

AIs.

These standards ensure AI-generated code is readable, reusable, diagnosable,
and suitable for training or operational use.

“Standards” for
AI-Generated Code (2/2)

Why These Standards Matter
✓AI often generates messy, inconsistent, or incorrect code.
✓Satellite workflows require clarity, reproducibility, and scientific

correctness.
✓In training environments, code must be easy to read and modify by

students.
✓In operations, code must be robust, maintainable, and verifiable.
✓Standards make AI a reliable assistant, not a risk.

Standards protect long-term quality of notebooks, training material, and
potential operational products.

6-Step Workflow for AI-Assisted
Product Development in Sat Met
• Discovery and/or Initial Conditions
• Data Access
• Download & Readout
• Initial Visualization
• Improved Visualization
• Operationalization

I.C: What data and where is it

Metaprompt (1 of 6)
You are an expert in satellite meteorology, Python engineering, and training notebook design.
Before generating any code or analysis, you must follow the standards, workflow, and feedback
process described below.

1. Coding Standards
❑ Follow PEP8 style.

❑ Use small, focused functions (no huge monolithic blocks).

❑ Include clear Google-style docstrings.

❑ Use meaningful variable and function names.

❑ Add type hints where reasonable.

❑ Provide minimal but useful comments (no long narratives).

❑ Avoid global variables when possible.

2. Maintainability & Structure
❑ Separate configuration (paths, channels, region, etc.) from logic.

❑ Design code to be modular and reusable in different notebooks or scripts.

❑ Prefer simple, common dependencies (e.g. numpy, xarray, matplotlib).

Metaprompt (2 of 6)

3. Diagnostics & Error Handling
❑Use try/except where appropriate with clear, actionable messages.
❑Validate inputs: file existence, variable names, dimensions, ranges, units (when known).
❑Add lightweight diagnostic prints or logging to help the user see what is happening.
❑Never hide errors silently; help the user understand them.

4. Operational-Ready Design
❑Write code so it can be turned into an operational module or script later.
❑Keep functions independent and focused on one job.
❑Make assumptions explicit in comments or docstrings.
❑Avoid over-complicated abstractions that make debugging harder.

Metaprompt (3 of 6)
5. Scientific Integrity
❑ Use physically meaningful variables and operations.
❑ If you are not sure about variable names or units, say so explicitly and suggest likely options, instead of inventing them.
❑ Never invent nonexistent satellite products or metadata.
❑ When appropriate, suggest that the user check documentation or sample metadata.

6. Workflow You Must Follow (Satellite Product Development)
❑ Apply these phases in order and make them explicit in your reasoning:
❑ Discovery and Initial Conditions – Clarify the product goal and available satellites/instruments.
❑ Data Access – Identify where the data is (AWS, THREDDS, WIS2, etc.).
❑ Download & Readout – Work out how to get files and inspect metadata/variables.
❑ Initial Visualization – Create the simplest viable plot or image.
❑ Improved Visualization – Enhance, normalize, combine channels, etc.
❑ Operationalization – Refactor, modularize, add diagnostics and documentation.
❑ When answering, clearly indicate which phase(s) you are addressing.

Metaprompt (4 of 6)
7. Download Logic
❑ Do NOT write complex download pipelines unless the user explicitly asks for them.

❑ Prefer to assume that “the data is already downloaded” and focus on reading and processing local files.

❑ If the user does request download code:

❖ ask which data source and protocol (HTTP, AWS S3, THREDDS, etc.),

❖ clearly mark any example URLs or paths as placeholders that must be adapted,

❖ keep the example simple and explain that it needs to be tested in their environment.

8. Incremental Development, Testing & Feedback
❑ You cannot run code or test it yourself. Therefore:

❑ Never claim that your code has been “tested” or “runs correctly” — you can only say it is a best-effort draft.

❑ Work incrementally:

❖ Propose a small piece of code (e.g. a single function or a minimal script).

❖ Ask the user to run it and report any errors or unexpected behavior.

❖ When the user shares an error/traceback, analyze it carefully and propose a fix.

❖ Prefer multiple small steps over one big, complex solution.

❖ Explicitly say things like: “Please run this cell and share any error messages so I can help you debug and improve it.”

Metaprompt (5 of 6)

9. Output Format
❑Use bullet lists for high-level plans.
❑Use clean Python code blocks for code.
❑Keep a concise, professional tone.
❑Make clear which parts are plan, which parts are code to try, and which parts are

follow-up steps.

10. Multi-AI Context
❑Assume your answer may be compared with outputs from other AI models (e.g.

ChatGPT, Gemini, DeepSeek).
❑Prioritize clarity, correctness, maintainability, and transparency over showing off.
❑Avoid clever but opaque solutions.

Metaprompt (6 of 6)

11. Before Coding
❑Before generating any code for a specific task:
❖Provide a short workflow plan based on the 6 phases above.
❖Ask any clarifying questions that are necessary (file paths,

satellite, region, etc.).
❖Only then, start producing code in small, testable pieces.

Acknowledge these rules and wait for the specific task.

Multi-AI Strategy

Cross-model
bootstrappingIterate

Refine
prompt, or
define new
guidance

Filter best
based on
direction

Compare
outputs and

evaluate
progress

Same
metaprompt

and prompt →
3 models

Multi-AI Strategy

Cross-model
bootstrappingIterate

Refine
prompt, or
define new
guidance

Filter best
based on
direction

Compare
outputs and

evaluate
progress

Same
metaprompt

and prompt →
3 models

Cross-model
bootstrappingIterate

Refine
prompt, or
define new
guidance

Filter best
based on
direction

Compare
outputs and

evaluate
progress

Same
metaprompt

and prompt →
3 models

Cross-model
bootstrappingIterate

Refine
prompt, or
define new
guidance

Filter best
based on
direction

Compare
outputs and

evaluate
progress

Same
metaprompt

and prompt →
3 models

CHATGPT

GEMINI

DEEPSEEK

Coming up…

Let's go into a practical concrete example.

Later we will use a sample satellite data to create our own product.

Lets see it in action

Discovery and/or Initial Conditions
Open colab.research.google.com to run/test
the code. Use you favorite(s) AI(s).

After the metaprompt.
Prompt: I need satellite data for the sea
surface temperature around Costa Rica.
What is available and where can I find it?
What satellite can be used? I need free and
open access to the data, also high spatial
resolution.

First iteration:
It seems like VIIRS is a great option. What is
the best free and open way to get the data?
Use Python to write a short program to
download the most recent data and then we
can try to explore the information.

Second iteration:

ChatGPT> Python error
Gemini> Python Lib error and Require credentials
DeepSeek> Python error

After the failures on the third iteration, I
decided to help the AIs a bit.

The Initial Conditions tend to bring
faster and better results with fewer
iterations.

colab.research.google.com
colab.research.google.com
colab.research.google.com
colab.research.google.com
colab.research.google.com
colab.research.google.com
colab.research.google.com

Look for some SST data

Found some data in the second Google link

Is that SST? Can you use it?
https://noaa-cdr-sea-surface-temp-optimum-interpolation-pds.s3.amazonaws.com/index.html#data/v2.1/avhrr/202511/

I got a list of files>

oisst-avhrr-v02r01.20251101.nc 3 days ago 2025-11-22 02:50:05 1 MB

oisst-avhrr-v02r01.20251101_preliminary.nc 20 days ago 2025-11-04 11:01:27 1 MB

oisst-avhrr-v02r01.20251102.nc 3 days ago 2025-11-22 02:50:03 1 MB

oisst-avhrr-v02r01.20251102_preliminary.nc 20 days ago 2025-11-04 11:01:27 1 MB

oisst-avhrr-v02r01.20251103.nc 3 days ago 2025-11-22 02:50:04 1 MB

oisst-avhrr-v02r01.20251103_preliminary.nc 20 days ago 2025-11-04 11:42:27 1 MB

oisst-avhrr-v02r01.20251104.nc 3 days ago 2025-11-22 02:50:04 1 MB

oisst-avhrr-v02r01.20251104_preliminary.nc 19 days ago 2025-11-06 02:48:00 1 MB

oisst-avhrr-v02r01.20251105_preliminary.nc 18 days ago 2025-11-06 10:45:40 1 MB

Gemini (3 iterations)

Iteration is most of the times just feeding
the Python error to the AI to help figure out

why it failed and fix it.

Gemini (4 iterations)

Gemini (5 iterations) Feed the product to the AI

DeepSeek (3 iterations)

DeepSeek got a bit lost in data dimensions
but came back after 3 errors

DeepSeek (8 iterations)

ChatGPT (5 iterations)

ChatGPT (7 iterations)

ChatGPT (8 iterations)
NOT A SINGLE LINE OF CODE!

We can do better with
higher resolution

Colab Research crashed due to RAM utilization
by the high-resolution data and products.

Moved to my laptop for processing using local
Jupyter Notebooks.

Lets do it all again / Initial Conditions

Prompt:
I found this thredds dataset. Lets start over with this new dataset:

Catalog

https://www.star.nesdis.noaa.gov/thredds/socd/coastwatch/catalog_coastwatch_sst_blended_ghrsst.ht

ml

Dataset Size Last Modified

 Folder Blended Sea Surface Temperature Data at STAR THREDDS Server --

 Folder Polar plus Geostationary Multisatellite Blended SST - Night --

 Folder Operational OSPO - Geographic Projection (Aggregated View)/ --

 Folder Operational OSPO - Geographic Projection (Per-file View)/ --

 Folder Reprocessed STAR - Geographic Projection (Aggregated View)/ --

 Folder Reprocessed STAR - Geographic Projection (Per-file View)/ --

Gemini (1 iteration)

Gemini (2 iterations)

Gemini (3 iterations)

Change location to Equatorial Guinea

Failure is expected
sometimes with AIs

ChatGPT and DeepSeek did not land a product after 5 iterations. So I sent the
Gemini code to those AIs and asked for improvements!

DeepSeek ChatGPT

Do your own product
We can use: Total Precipitable Water
20 minutes

I.C: What data
and where is it

Metaprompt

2 iterations later

¡Gracias!
Thank you!

¡Grazie Mille!

	Slide 1: AI + Jupyter for Satellite Meteorology A Practical Workflow for Training & Product Prototyping
	Slide 2: Why AI? Why Now?
	Slide 3: Because it works!
	Slide 4: What AI cannot do (yet)
	Slide 5: What AI can do
	Slide 6: What AI can do in Satellite Meteorology
	Slide 7: The AI Prompt Framework
	Slide 8: “Standards” for AI-Generated Code (1/2)
	Slide 9: “Standards” for AI-Generated Code (2/2)
	Slide 10: 6-Step Workflow for AI-Assisted Product Development in Sat Met
	Slide 11: Metaprompt (1 of 6)
	Slide 12: Metaprompt (2 of 6)
	Slide 13: Metaprompt (3 of 6)
	Slide 14: Metaprompt (4 of 6)
	Slide 15: Metaprompt (5 of 6)
	Slide 16: Metaprompt (6 of 6)
	Slide 17: Multi-AI Strategy
	Slide 18: Multi-AI Strategy
	Slide 19: Coming up…
	Slide 20: Lets see it in action
	Slide 21: Discovery and/or Initial Conditions
	Slide 22: Look for some SST data
	Slide 23: Is that SST? Can you use it?
	Slide 24: Gemini (3 iterations)
	Slide 25: Gemini (4 iterations)
	Slide 26: Gemini (5 iterations) Feed the product to the AI
	Slide 27: DeepSeek (3 iterations)
	Slide 28: DeepSeek got a bit lost in data dimensions but came back after 3 errors
	Slide 29: DeepSeek (8 iterations)
	Slide 30: ChatGPT (5 iterations)
	Slide 31: ChatGPT (7 iterations)
	Slide 32: ChatGPT (8 iterations)
	Slide 33: We can do better with higher resolution
	Slide 34
	Slide 35: Lets do it all again / Initial Conditions
	Slide 36: Gemini (1 iteration)
	Slide 37: Gemini (2 iterations)
	Slide 38: Gemini (3 iterations)
	Slide 39: Change location to Equatorial Guinea
	Slide 40: Failure is expected sometimes with AIs
	Slide 41
	Slide 42: Do your own product We can use: Total Precipitable Water 20 minutes
	Slide 43
	Slide 44: ¡Gracias! Thank you! ¡Grazie Mille!

