Infrastructure Commission (INFCOM)

Standing Committee on Measurements, Instrumentation and Traceability (SC-MINT)

Expert Team on Quality, Traceability and Calibration (ET-QTC)

Calibration of Wind Instruments

Part-1: Introduction

Holger Doerschel (DWD) Zafer Turgay Dag (TSMS)

Content

Part 1:

- Introduction to this topic and historical information
- Concepts and definitions

Part 2:

Methods of measurement

Part 3:

 Requirements for the laboratory setup #1

Part 4:

Requirements for the laboratory setup #2

Part 5:

- General procedure
- Calibration example #1
- Calibration example #2
- Calibration example #3
- References and links

Content

Part 1:

- Introduction to this topic and historical information
- Concepts and definitions

Part 2:

Methods of measurement

Part 3:

Requirements for the laboratory setup #1

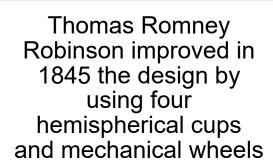
Part 4:

Requirements for the laboratory setup #2

Part 5:

- General procedure
- Calibration example #1
- Calibration example #2
- Calibration example #3
- References and links

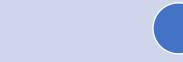
Introduction to this topic


- anemometer: greek anemos "wind" and métron "measurand"
- wind is the (generally horizontal) movement of air in the atmosphere
- wind is an effect as a result of differences in atmospheric pressure
- the air moves from the higher pressure area to the lower pressure area as long as the horizontal gradient in pressure exists
- wind can be very dangerous and can cause severe damage
- wind speed influences all kinds of transport like ships and planes
- also increases the evaporation rate

Historical information

earliest known description of an aneometer
1450 Leon
Battista Alberti

the first Meteorological Congress in Vienna (1873) initiated the early meteorological requirements


John Patterson developed in **1926** a three-cup anemometer

Historical information

Prandtl pitot tube was invented by Ludwig Prandl in the first half of the 20th century

Laser Doppler Anemometry (LDA) have been developed in the **seventies of the 20**th century

ultrasonic anemometers have been developed in the **fifties of the 20**th century

Content

Part 1:

- Introduction to this topic and historical information
- Concepts and definitions

Part 2:

Methods of measurement

Part 3:

Requirements for the laboratory setup #1

Part 4:

Requirements for the laboratory setup #2

Part 5:

- General procedure
- Calibration example #1
- Calibration example #2
- Calibration example #3
- References and links

WMO-No. 8

Definition of surface wind #1:

Wind velocity:

 A three-dimensional vector quantity with small-scale random fluctuations in space and time superimposed upon a larger-scale organized flow. It is considered in this form in relation to, for example, airborne pollution and the landing of aircraft.

WMO-No. 8

Definition of surface wind #1:

Wind velocity:

© Deutscher Wetterdienst Hamburg

- ..., surface wind will be considered mainly as a two-dimensional vector quantity specified by two numbers representing direction and speed.
- The extent to which wind is characterized by rapid fluctuations is referred to as gustiness, and single fluctuations are called gusts.

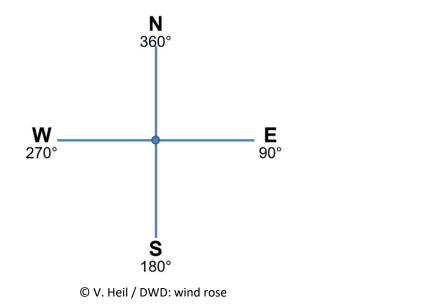
WMO-No. 8

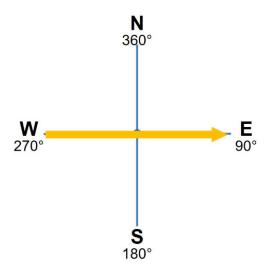
Definition of surface wind #2:

- Time constant (of a first-order system):
 - The time required for a device to detect and indicate about 63% of a step-function change.
- Response length.
 - Approximately, the passage of wind (in metres) required for the output of a wind-speed sensor to indicate about 63% of a step-function change of the input speed.

WMO-No. 8

Recommendations #1:


related to the instrument, not to the installation site:


- Required measurement uncertainty for horizontal speed of 0.5 ms⁻¹ below 5 m s⁻¹ and better than 10% above 5 ms⁻¹ is usually sufficient.
- Wind direction should be measured with an uncertainty of 5°.
- <u>In order to</u> determine peak gusts accurately, it is desirable to sample the filtered wind signal every 0.25 s (frequency 4 Hz).
- Wind direction resolution ≤ 2.8°.

Wind direction related information:

- wind directions are equal with the geographic direction
- the wind direction is the direction from which the wind blows

© V. Heil / DWD: wind from the west

In the following, the measurement of wind speed will be discussed.

Calibration of Wind Instruments End of Part 1

Thank you.

