Training Course on Seamless Prediction of Air Pollution in Africa

Health Impact Assessments

Aurelio Tobías *(Spanish Research Council)* Massimo Stafoggia *(Lazio Region Health Service)* Sophie Gumy *(World Health Organization)*

Deadly smog in London, 1952

Major air pollutants

Health effects of air pollution

Regulatory Concentrations

Table 0.1. Recommended AQG levels and interim targets

^a 99th percentile (i.e. 3-4 exceedance days per year).

^b Average of daily maximum 8-hour mean O₃ concentration in the six consecutive months with the highest six-month running-average O₃ concentration.

Assessing health effects and impacts

- **Health effects** refers to changes in health status caused by an exposure
	- Short-term effects account for acute impact on health after an immediate exposure (time-series studies)

• Long-term effects involve chronic health effect after a cumulative exposure (cohort studies)

• **Health impact assessment** evaluates potential health effects of proposed actions relative to an exposure, to provide advice for decision-making process that will protect health

Training Course on Seamless Prediction of Air Pollution in Africa

Short-term health effects

Aurelio Tobías *(Spanish Research Council)*

Introduction

- Research question *"Is there an association between day-to-day variation in the environmental exposure and daily risk of health outcome"?*
- Health outcomes and environmental exposures are characterized by similar time-trends
- Measures of individual predictors are usually not available
- Need of a study design relaying on between-day comparison within the same population and able to control for time-trends to disentangle shortterm health effects of air pollution

Time-series data

- A time-series is a sequence of measurements equally spaced through time
- The unit of analysis is the day, not the individual person
- The health outcome is a count (e.g., number of deaths)

• First week of time-series data in London (Jan 2002 – Dec 2006)

Time-series design

• **Strengths**

- Use of administratively collected data
- Same population is compared with itself, focus is day-to-day variation
- Time-invariant or slowly varying individual risk factors controlled by design (e.g., sex, age, smoking)
- **Limitations**
- Ecological design based on aggregated, not individual data
- Not applicable to estimate chronic effects (long-term)
- Sensitive to choices for statistical modelling

Confounding

- It must be associated with the exposure (X) being investigated
- It must be independently associated with the outcome (Y) being investigated
- It must not be on the causal pathway between exposure (X) and outcome (Y)

Yule GU. **Why do we sometimes get nonsense correlations between time series?** J Royal Stat Soc Sci. 1926;89:1-64.

Yule GU. **Why do we sometimes get nonsense correlations between time series?** J Royal Stat Soc Sci. 1926;89:1-64.

Confounding

- It must be associated with the exposure (X) being investigated
- It must be independently associated with the outcome (Y) being investigated
- It must not be on the causal pathway between exposure (X) and outcome (Y)

Modelling framework

- Similar in principle to any regression analysis but with some specific features
- Poisson regression

$$
log(Y_t) = \beta_0 + \beta_1 PM_{10t} + ns(t) + ns(temp)
$$

 $Y|x \sim Poisson(\mu)$ with $E(Y|x) = \mu$ and $V(Y|x) = \mu$

- \circ exp(β_1) is the relative risk (RR) for 1 unit increase of the PM_{10} exposure
- \circ $(RR 1) \times 100\%$ is the percentage risk increase

- Cumulative effect at time *t* for an exposure in the previous *t-L* days
- Cumulative effect for an exposure at day *t* experienced in the next *t+L* days

Lag variables

- In practice, time-series data is usually analysed with a forward perspective
- It requires generating lagged exposure variables to be fitted in the time-series regression model
- Poisson regression

$$
log(Y_t) = \beta_0 + \sum \beta_j PM_{10_{t-j}} + ns(t) + ns(temp)
$$

 $Y|x \sim Poisson(\mu)$ with $E(Y|x) = \mu$ and $V(Y|x) = \mu$

• $exp(\beta_i)$ is the relative risk (RR) for 1 unit increase of the PM_{10} exposure at *lag j*

• First week of time-series data in London (Jan 2002 – Dec 2006)

Multi-location studies

 0.11 (-0.27 to 0.49)

0.41 (0.14 to 0.68)

0.42 (0.27 to 0.58)

0.87 (0.60 to 1.15)

 0.20 (-1.03 to 1.44)

0.47 (-0.36 to 1.31)

 0.25 (-0.03 to 0.53)

0.61 (0.24 to 0.99)

0.06 (-0.36 to 0.48)

0.79 (0.60 to 0.98)

0.44 (0.39 to 0.50)

 $\overline{1}$

15

100

598

Portugal

Spain

Sweder

Taiwan

Total

Thailand

United Kingdom

United States

Switzerland

South Africa

South Korea

* Pooled estimates represent the percentage changes in daily all-cause mortality per 10-µg-per-cubic-meter increase in concentrations of particulate matter (PM) with an aerodynamic diameter of 10 μ m or less (PM₁₀) and PM with an aerodynamic diameter of 2.5 μ m or less (PM_{2.5}), as determined with the use of trimmed exposure data in which the highest 5% and lowest 5% of PM₁₀ and PM₂, measurements were excluded. NA denotes not available.

 0.03 $(-1.14$ to $1.21)$

0.80 (0.16 to 1.44)

NA

1.96 (1.18 to 2.75)

 0.08 (-1.44 to 1.62)

0.79 (-0.96 to 2.58)

0.62 (-0.39 to 1.64)

NA

NA

1.58 (1.28 to 1.88)

0.68 (0.59 to 0.77)

 $\overline{}$

107

499

The NEW ENGLAND **JOURNAL of MEDICINE** ESTABLISHED IN 1812 **AUGUST 22, 2019** VOL. 381 NO. 8

Ambient Particulate Air Pollution and Daily Mortality in 652 Cities

C. Liu, R. Chen, F. Sera, A.M. Vicedo-Cabrera, Y. Guo, S. Tong, M.S.Z.S. Coelho, P.H.N. Saldiva, E. Lavigne, P. Matus, N. Valdes Ortega, S. Osorio Garcia, M. Pascal, M. Stafoggia, M. Scortichini, M. Hashizume, Y. Honda, M. Hurtado-Díaz, J. Cruz, B. Nunes, J.P. Teixeira, H. Kim, A. Tobias, C. Íñiguez, B. Forsberg, C. Áström, M.S. Ragettli, Y.-L. Guo, B.-Y. Chen, M.L. Bell, C.Y. Wright, N. Scovronick, R.M. Garland, A. Milojevic, J. Kyselý, A. Urban, H. Orru, E. Indermitte, J.J.K. Jaakkola, N.R.I. Ryti, K. Katsouyanni, A. Analitis, A. Zanobetti, J. Schwartz, J. Chen, T. Wu, A. Cohen, A. Gasparrini, and H. Kan

Figure 3. Pooled Concentration-Response Curves.

Shown are the pooled concentration-response curves for the associations of 2-day moving average concentrations of PM₁₀ (Panel A) and PM_{2.5} (Panel B) with daily all-cause mortality. The y axis represents the percentage difference from the pooled mean effect (as de-
rived from the entire range of PM concentrations at each location) on mortality. Zer and the portion of the curve below zero denotes a smaller estimate than the mean effect. The dashed lines represent the air-quality guidelines or standards for 24-hour average concentrations of PM₁₀ or PM₂₋₅ according to the World Health Organization Air Quality
Guidelines (WHO AQG), WHO Interim Target 1 (IT-1), WHO Interim Target 2 (IT-2), WHO Int Quality Directive (EU AQD), U.S. National Ambient Air Quality Standard (NAAQS), and China Air Quality Standard (AQS).

Figure A.1. Forest plot of 58 studies (66 effect sizes) examining the association between PM₁₀ and all-cause mortality.

Relative risk (RR)

Literature review

Review article

Short-term exposure to particulate matter (PM₁₀ and PM_{2.5}), nitrogen dioxide ($NO₂$), and ozone ($O₃$) and all-cause and cause-specific mortality: Systematic review and meta-analysis

Pablo Orellano^{a,*}, Julieta Reynoso^b, Nancy Quaranta^{c,d}, Ariel Bardach^e, Agustin Ciapponi^e

Table 1

RR, pooled relative risks; 95% CI, 95% confidence interval; p-value, significance of the association or statistical tests; PI, 80% prediction interval; N/A, not applicable $(< 10$ studies).

Summary

- The time-series design is useful to provide evidence on short-term associations between air pollution and health outcomes
- Time-series regression is similar in principle to any regression analysis but with some specific features
- The design accounts for temporal variations (e.g., seasonal changes, day-ofweek effects) and weather conditions (e.g., temperature) that may influence both air pollution and health outcome
- Time-series studies can investigate lagged effects, identifying whether health outcomes occur immediately or with some delay following exposure to air pollution