Training Course on Seamless Prediction of Air Pollution in Africa

Health Impact Assessments

Aurelio Tobías (Spanish Research Council) Massimo Stafoggia (Lazio Region Health Service) Sophie Gumy (World Health Organization)

Deadly smog in London, 1952

Major air pollutants

Health effects of air pollution

Regulatory Concentrations

Table 0.1. Recommended AQG levels and interim targets

Pollutant	Averaging time		Interim target			
		1	2	3	4	-
PM _{2.5} , µg/m ³	Annual	35	25	15	10	5
	24-hour ^a	75	50	37.5	25	15
PM ₁₀ , µg/m³	Annual	70	50	30	20	15
	24-hour ^a	150	100	75	50	45
O ₃ , µg/m³	Peak season ^b	100	70	_	-	60
	8-hour ^a	160	120	-	-	100
NO ₂ , µg/m³	Annual	40	30	20	-	10
	24-hour ^a	120	50	_	_	25
SO ₂ , µg/m³	24-hour ^a	125	50	_	-	40
CO, mg/m ³	24-hour ^a	7	-	-	-	4

^a 99th percentile (i.e. 3–4 exceedance days per year).

 b Average of daily maximum 8-hour mean O_{3} concentration in the six consecutive months with the highest six-month running-average O_{3} concentration.

Assessing health effects and impacts

- Health effects refers to changes in health status caused by an exposure
 - Short-term effects account for acute impact on health after an immediate exposure (time-series studies)

Long-term effects involve chronic health effect after a cumulative exposure (cohort studies)

• Health impact assessment evaluates potential health effects of proposed actions relative to an exposure, to provide advice for decision-making process that will protect health

Training Course on Seamless Prediction of Air Pollution in Africa

Short-term health effects

Aurelio Tobías (Spanish Research Council)

Introduction

- Research question "Is there an association between day-to-day variation in the environmental exposure and daily risk of health outcome"?
- Health outcomes and environmental exposures are characterized by similar time-trends
- Measures of individual predictors are usually not available
- Need of a study design relaying on between-day comparison within the same population and able to control for time-trends to disentangle short-term health effects of air pollution

Time-series data

- A time-series is a sequence of measurements equally spaced through time
- The unit of analysis is the day, not the individual person
- The health outcome is a count (e.g., number of deaths)

 First week of time-series data in London (Jan 2002 – Dec 2006)

obs	date	deaths	temp	pm10
1.	01jan2002	199	-0.2	71.7
2.	02jan2002	231	0.1	40.2
3.	03jan2002	210	0.9	41.8
4.	04jan2002	203	0.5	50.4
5.	05jan2002	224	4.2	49.4
6.	06jan2002	198	7.1	31.1
7.	07jan2002	180	5.2	48.6

Time-series design

• Strengths

- Use of administratively collected data
- Same population is compared with itself, focus is day-to-day variation
- Time-invariant or slowly varying individual risk factors controlled by design (e.g., sex, age, smoking)

- Limitations
- Ecological design based on aggregated, not individual data
- Not applicable to estimate chronic effects (long-term)
- Sensitive to choices for statistical modelling

Confounding

- It must be associated with the exposure (X) being investigated
- It must be independently associated with the outcome (Y) being investigated
- It must not be on the causal pathway between exposure (X) and outcome (Y)

Yule GU. Why do we sometimes get nonsense correlations between time series? J Royal Stat Soc Sci. 1926;89:1-64.

Yule GU. Why do we sometimes get nonsense correlations between time series? J Royal Stat Soc Sci. 1926;89:1-64.

Confounding

- It must be associated with the exposure (X) being investigated
- It must be independently associated with the outcome (Y) being investigated
- It must not be on the causal pathway between exposure (X) and outcome (Y)

Modelling framework

- Similar in principle to any regression analysis but with some specific features
- Poisson regression

$$log(Y_t) = \beta_0 + \beta_1 P M_{10t} + ns(t) + ns(temp)$$

 $Y|x \sim Poisson(\mu)$

with $E(Y|x) = \mu$ and $V(Y|x) = \mu$

- $exp(\beta_1)$ is the relative risk (RR) for 1 unit increase of the PM_{10} exposure
- (*RR* − 1)×100% is the percentage risk increase

- Cumulative effect at time *t* for an exposure in the previous *t*-*L* days
- Cumulative effect for an exposure at day t experienced in the next t+L days

Lag variables

- In practice, time-series data is usually analysed with a forward perspective
- It requires generating lagged exposure variables to be fitted in the time-series regression model
- Poisson regression

$$log(Y_t) = \beta_0 + \sum \beta_j P M_{10_{t-j}} + ns(t) + ns(temp)$$

 $Y|x \sim Poisson(\mu)$ with $E(Y|x) = \mu$ and $V(Y|x) = \mu$

• $exp(\beta_j)$ is the relative risk (RR) for 1 unit increase of the PM_{10} exposure at *lag j* First week of time-series data in London (Jan 2002 – Dec 2006)

				lagl.	1ag2.
obs	date	deaths	pm10	pm10	pm10
1.	01jan2002	199	71.7		
2.	02jan2002	231	40.2	71.7	•
3.	03jan2002	210	41.8	40.2	71.7
4.	04jan2002	203	50.4	41.8	4 0.2
5.	05jan2002	224	49.4	50.4	41.8
6.	06jan2002	198	31.1	49.4	50.4
7.	07jan2002	180	48.6	31.1	49.4

Multi-location studies

Fable 1. Percentage Change in All-Cause Mortality per 10+µg-per-Cubic-Meter Increase in 2-Day Moving Average Concentrations of Inhalable Particulate Matter (PM10) and Fine Particulate Matter (PM2.5).*

Country or Region		PM10	PM _{2.5}	
	Cities with Available Data	Pooled Estimate	Cities with Available Data	Pooled Estimate
	no.	% (95% CI)	no.	% (95% CI)
Australia	3	1.32 (0.22 to 2.44)	3	1.42 (-0.12 to 2.99)
Brazil	1	1.22 (0.97 to 1.47)	0	NA
Canada	13	0.76 (0.25 to 1.27)	25	1.70 (1.17 to 2.23)
Chile	4	0.33 (0.14 to 0.53)	4	0.27 (-0.68 to 1.23)
China	272	0.28 (0.22 to 0.34)	272	0.41 (0.32 to 0.50)
Colombia	1	0.03 (-0.34 to 0.39)	0	NA
Czech Republic	1	0.40 (-0.02 to 0.82)	0	NA
Estonia	4	0.46 (-0.69 to 1.63)	3	0.23 (-4.24 to 4.90)
Finland	1	0.07 (-0.51 to 0.65)	1	0.14 (-0.55 to 0.83)
France	18	0.46 (-0.15 to 1.07)	0	NA
Greece	1	0.53 (0.17 to 0.90)	1	2.54 (1.28 to 3.83)
Italy	18	0.65 (0.26 to 1.04)	0	NA
Japan	47	1.05 (0.78 to 1.31)	47	1.42 (1.05 to 1.81)
Mexico	8	0.67 (0.48 to 0.86)	3	1.29 (0.21 to 2.39)
Portugal	2	0.11 (-0.27 to 0.49)	1	0.03 (-1.14 to 1.21)
South Africa	6	0.41 (0.14 to 0.68)	5	0.80 (0.16 to 1.44)
South Korea	7	0.42 (0.27 to 0.58)	0	NA
Spain	45	0.87 (0.60 to 1.15)	19	1.96 (1.18 to 2.75)
Sweden	1	0.20 (-1.03 to 1.44)	1	0.08 (-1.44 to 1.62)
Switzerland	8	0.47 (-0.36 to 1.31)	4	0.79 (-0.96 to 2.58)
Taiwan	3	0.25 (-0.03 to 0.53)	3	0.62 (-0.39 to 1.64)
Thailand	19	0.61 (0.24 to 0.99)	0	NA
United Kingdom	15	0.06 (-0.36 to 0.48)	0	NA
United States	100	0.79 (0.60 to 0.98)	107	1.58 (1.28 to 1.88)
Total	598	0.44 (0.39 to 0.50)	499	0.68 (0.59 to 0.77)

* Pooled estimates represent the percentage changes in daily all-cause mortality per 10-μg-per-cubic-meter increase in concentrations of particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM₁₀) and PM with an aerodynamic diameter of 2.5 μm or less (PM_{2.5}), as determined with the use of trimmed exposure data in which the highest 5% and lowest 5% of PM₁₀ and PM_{2.5} measurements were excluded. NA denotes not available.

Ambient Particulate Air Pollution and Daily Mortality in 652 Cities

C. Liu, R. Chen, F. Sera, A.M. Vicedo-Cabrera, Y. Guo, S. Tong, M.S.Z.S. Coelho, P.H.N. Saldiva, E. Lavigne, P. Matus, N. Valdes Ortega, S. Osorio Garcia, M. Pascal, M. Stafoggia, M. Scortichini, M. Hashizume, Y. Honda, M. Hurtado-Díaz, J. Cruz, B. Nunes, J.P. Teixeira, H. Kim, A. Tobias, C. Iñiguez, B. Forsberg, C. Åström, M.S. Ragettil, Y.-L. Guo, B.-Y. Chen, M.L. Bell, C.Y. Wright, N. Scovronick, R.M. Garland, A. Milojevic, J. Kyselý, A. Urban, H. Orru, E. Indermitte, J.J.K. Jaakkola, N.R.I. Ryti, K. Katsouyanni, A. Analitis, A. Zanobetti, J. Schwartz, J. Chen, T. Wu, A. Cohen, A. Gasparrini, and H. Kan

Figure 3. Pooled Concentration-Response Curves.

Shown are the pooled concentration-response curves for the associations of 2 day moving average concentrations of PM₁₂ (Panel A) and PM₂₂ (Panel B) with daily all-cause mortality. The y axis represents the percentage difference from the pooled mean effect (as derived from the entire range of PM concentrations at each location) on mortality. Zero on the y axis represents the pooled mean effect, and the portion of the curve below zero denotes a smaller estimate than the mean effect. The dashed lines represent the air-quality guidelines or standards for 24-hour average concentrations of PM₂₀, represents the tot PM₂₀ according to the World Health Organization Air Quality Guidelines (WHO AQG), WHO Interim Target 1 (T-1), WHO Interim Target 2 (T-2), WHO Interim Target 3 (T-3), European Union Air Quality Directive (EU AQD). U.S. National Ambient Air Quality Clarketty (EU AQD).

Figure A.1. Forest plot of 58 studies (66 effect sizes) examining the association between PM₁₀ and all-cause mortality.

Article - Location / Country or Region (Study Name)	Relative ris	k (RR) RR	95%-CI	Weight
Alessandrini, 2013 - Multicity / Italy (EpiAir2)	<u>i</u>	1.0051	[1.0016; 1.0086]	2.0%
Anderson, 2001 - West Midlands / UK	Ť	1.0008	[0.9927; 1.0090]	0.7%
Atkinson, 2010 - London / UK		⊢ 1.0138	[1.0040; 1.0236]	0.5%
Atkinson, 2016 - London / UK		0.9940	[0.9850; 1.0031]	0.6%
Balakrishnan, 2013 - Chennai / India (PAPA)		1.0044	[1.0018; 1.0070]	2.5%
Biggeri, 2005 - Multicity / Italy (MISA)		1.0098	[1.0035; 1.0161]	1.1%
Blanco-Becerra, 2014 - Bogota / Colombia	100	1.0057	[1.0025; 1.0089]	2.2%
Bravo, 2016 - Sao Paulo / Brazil		1.0092	[1.0070; 1.0113]	2.7%
Bremner, 1999 - London / UK	亡	1.0026	[0.9981; 1.0071]	1.6%
Burnett, 2004 - Multicity / Canada		1.0047	[1.0005; 1.0089]	1.7%
Castillejos, 2000 - Mexico / Mexico	<u> </u>	- 1.0183	[1.0099; 1.0268]	0.7%
Chen, 2013 - Multicity / China (CAPES)	11	1.0035	[1.0014; 1.0056]	2.1%
Daponte Codina, 1999 - Hueiva / Spain (EMECAM)	1	1.0249	[0.9979; 1.0526]	0.1%
Dholakia, 2014 - Anmedabad / India	<u>T.</u>	1.0016	[0.9970; 1.0062]	1.0%
Dholakia, 2014 - Bangalore / India	E.	1.0022	[0.9995; 1.0049]	2.4%
Dholakia, 2014 - Hyderabad / India	1.00	1.0085	[1.0008, 1.0183]	0.0%
Dholakia, 2014 - Mumbal / India	I	1.0020	[1.0010, 1.0030]	0.2%
Diora 2012 Madrid / Engin		1.0130	[0.9905, 1.0310]	0.2%
Eaustini, 2012 - Madrid / Spain Eaustini, 2011 - Multicity / Italy /EpiAir)	100	1.0170	[1.0079, 1.0202]	2 304
Fighting 2011 - Multicity / Italy (EpiAli)	5	1.0005	[1.0040, 1.0050]	0.3%
Finitionisuolar, 2013 - Reykjavik / Iceland	6	1.0010	[1 0020: 1 0040]	3 2%
Couvein 2000 - Sao Baulo / Prazil	100	1.0030	[1.0020, 1.0040]	3.270
Guo 2014 - Multicity / Thailand	16	1.0011	[0.9982, 1.0040]	2.3%
Hong 2017 - British Columbia / Canada	1	1.0040	[1.0021, 1.0009]	0.1%
Jansson, 2013 - Multicity / Netherlands		1.0030	[1.0100, 1.0030]	1.8%
Katsouvanni 1997 - Multicity / Europe (APHEA)	- E	1.0040	[1.0026; 1.0060]	2.9%
Kim 2017 - Multicity / Janan	- <u>F</u>	1.0020	[0.9976: 1.0064]	1.6%
Kim, 2017 - Multicity / Korea	E.	1.0020	[1.0001: 1.0101]	1.4%
Lanzinger 2016 - Multicity / Europe (LEIREG)		0.9987	[0.0883: 1.0003]	0.5%
Li 2017 - Multicity / China	1:	1 0015	[1 0011: 1 0019]	3.4%
Lopez-Villarrubia, 2010 - Las Palmas de Gran Canaria / Snain		0.9943	[0.9811: 1.0077]	0.3%
Lopez-Villarrubia, 2010 - Santa Cruz de Tenerife / Snain		1 0000	[0.9847: 1.0155]	0.2%
Maji 2017 - Delhi / India	1	1 0010	[0.9990: 1.0030]	2.8%
Mar. 2000 - Phoenix / US	1.	- 1.0120	[1.0042: 1.0198]	0.8%
Moolgaykar, 2013 - Multicity / US (NMMAPS)	10	1.0040	[1.0027: 1.0053]	3.1%
Neophytou, 2013 - Nicosia / Cyprus	-4	0.9976	[0.9877: 1.0076]	0.5%
Neuberger, 2013 - Graz / Austria		⊢ 1.0130	[1.0051: 1.0210]	0.8%
Neuberger, 2013 - Linz / Austria	÷	1.0020	[0.9970; 1.0070]	1.4%
Neuberger, 2007 - Vienna / Austria	¥	1.0020	[0.9970; 1.0070]	1.4%
Ocaña-Riola, 1999 - Seville / Spain (EMECAM)		0.9800	[0.9672; 0.9930]	0.3%
ONeill, 2004 - Mexico / Mexico		1.0004	[0.9988; 1.0020]	3.0%
Ostro, 2011 - Barcelona / Spain	*	1.0073	[1.0015; 1.0130]	1.2%
Perez, 2015 - Multicity / Switzerland		1.0020	[0.9980; 1.0060]	1.8%
Rajarathnam, 2011 - Delhi / India (PAPA)	10	1.0032	[1.0015; 1.0048]	2.9%
Ren, 2006 - Brisbane / Australia		1.0418	[1.0100; 1.0746]	0.1%
Revich, 2010 - Moscow / Russia	10	1.0033	[1.0009; 1.0057]	2.6%
Romieu, 2012 - Multicity / Latin America (ESCALA)	101	1.0077	[1.0054; 1.0100]	2.6%
Serinelli, 2010 - Brindisi / Italy (MISA-2)		1.0568	[0.9876; 1.1308]	0.0%
Tsai, 2003 - Kaohsiung / Taiwan	+	1.0000	[0.9919; 1.0082]	0.7%
Wan Mahiyuddin, 2013 - Klang Valley / Malaysia	世	1.0017	[0.9972; 1.0062]	1.6%
Wordley, 1997 - Birmingham / UK	*	- 1.0110	[1.0011; 1.0210]	0.5%
Yang, 2004 - Taipei / Taiwan	亡	0.9984	[0.9906; 1.0063]	0.8%
Yin, 2017 - Multicity / China		1.0044	[1.0030; 1.0058]	3.1%
Zeka, 2005 - Multicity / US		1.0020	[1.0008; 1.0032]	3.2%
Dockery, 1992 - Saint Louis / US	-	► 1.0151	[1.0015; 1.0289]	0.3%
Dockery, 1992 - Tennessee / US		• 1.0162	[0.9869; 1.0463]	0.1%
Peters, 2009 - Erfurt / Germany	1.	0.9971	[0.9903; 1.0039]	0.9%
Samoli, 2011 - Athens / Greece	100	1.0071	[1.0043; 1.0099]	2.4%
de Almeida, 2011 - Oporto / Portugal		1.0067	[1.0002; 1.0132]	1.0%
Simpson, 2000 - Melbourne / Australia	Ē.	1.0030	[0.9940; 1.0121]	0.6%
reyna, 2012 - mexicali / Mexico	12	1.0035	[0.9996; 1.0074]	1.8%
Laneepanichskui, 2018 - Multicity / Thailand	100	1.0063	[1.0032; 1.0094]	2.2%
Li, 2018 - Ningbo / China		1.0050	[0.9981; 1.0120]	0.9%
Izima, 2016 - Attens / Greece	1	1.0072	[1.0045; 1.0099]	2.4%
Renzi, 2017 - Sicily / Italy	*	1.0063	[1.0004; 1.0122]	1.2%
Pandom offests model		4 0044	14 0024. 4 00403	100.0%
Radiation interval (20% PI)	•	1.0041	[1.0034; 1.0049]	100.0%
Prediction Interval (80%-PI)			[1.0013; 1.0070]	
0.9	1	11		
0.9	Relative risk	k (BR)		

Literature review

a Central Control Cont

Review article

Short-term exposure to particulate matter (PM_{10} and $PM_{2.5}$), nitrogen dioxide (NO_2), and ozone (O_3) and all-cause and cause-specific mortality: Systematic review and *meta*-analysis

Pablo Orellano^{a,*}, Julieta Reynoso^b, Nancy Quaranta^{c,d}, Ariel Bardach^e, Agustin Ciapponi^e

Table 1 Exposures, outcomes and pooled effect sizes.

F								
Pollutant	Outcome	Number of effect sizes	RR (95% CI)	p-value	Ы	Egger's test (p-value)		
PM ₁₀	All-cause mortality	66	1.0041 (1.0034–1.0049)	< 0.0001	1.0013-1.0070	< 0.001		
PM ₁₀	Cardiovascular mortality	44	1.0060 (1.0044–1.0077)	< 0.0001	1.0016-1.0105	0.024		
PM ₁₀	Respiratory mortality	41	1.0091 (1.0063–1.0119)	< 0.0001	1.0017-1.0166	0.209		
PM ₁₀	Cerebrovascular mortality	20	1.0044 (1.0022-1.0066)	0.0005	1.0001-1.0087	< 0.001		
PM _{2.5}	All-cause mortality	29	1.0065 (1.0044-1.0086)	< 0.0001	1.0017-1.0114	0.015		
PM _{2.5}	Cardiovascular mortality	28	1.0092 (1.0061-1.0123)	< 0.0001	1.0026-1.0158	0.803		
PM _{2.5}	Respiratory mortality	20	1.0073 (1.0029–1.0116)	0.0023	0.9998-1.0148	0.606		
PM _{2.5}	Cerebrovascular mortality	7	1.0072 (1.0012-1.0132)	0.0257	0.9953-1.0192	N/A		
NO ₂ (24-hour average)	All-cause mortality	54	1.0072	< 0.0001	1.0031-1.0113	0.048		
NO ₂ (1-hour max.)	All-cause mortality	10	1.0024	0.0892	0.9985-1.0064	0.154		
O ₃	All-cause mortality	48	1.0043	< 0.0001	1.0013-1.0073	0.001		

RR, pooled relative risks; 95% CI, 95% confidence interval; p-value, significance of the association or statistical tests; PI, 80% prediction interval; N/A, not applicable (< 10 studies).

Summary

- The time-series design is useful to provide evidence on short-term associations between air pollution and health outcomes
- Time-series regression is similar in principle to any regression analysis but with some specific features
- The design accounts for temporal variations (e.g., seasonal changes, day-ofweek effects) and weather conditions (e.g., temperature) that may influence both air pollution and health outcome
- Time-series studies can investigate lagged effects, identifying whether health outcomes occur immediately or with some delay following exposure to air pollution