CÁLCULO DE ESTADÍSTICAS POR POLÍGONOS

Podemos descargar la capa de polígonos de nuestro país de la web: https://gadm.org/download_country.html

Y elegir el archivo que acaba en 1 ó 2 que corresponde a los límites de regiones o municipios.

Necesitamos también la capa de la variable meteorológica que queramos analizar, en nuestro caso lo haremos con la temperatura media anual de España en el periodo 1971-2020 que hemos recortado en ejercicios anteriores.

El módulo que utilizaremos es: *Geoprocessing/Shapes/Shapes-Grid Tools/Grid Values/Spatial Extent/Grid Statistics for Polygons*

Y seleccionamos "create" en todas las estadísticas que queramos obtener para luego analizar.

Grid Statistics for	Polygons		>
Tool		 Data Objects Grids 	Okay
Name Author	Grid Statistics for Polygons O.Conrad (c) 2003, Quantile Calculation (c) 2007 by Johan Van de Wauw	 Grid System <not set=""></not> >> Grids No objects Shapes 	Cancel
Version Library ID	1.0 shapes_grid 2	>> Polygons <not set=""> < Statistics <not set=""> Number of Cells Minimum Maximum</not></not>	Save Defaults
Specification	n grid	Range C	Info <<
Description		Variance Standard Deviation	
Zonal grid statistics. For each polygon statistics based on all covered grid cells will be calculated.		Gini	

A continuación representamos cualquiera de las estadísticas calculadas, por ejemplo TMEAN y comprobamos las diferencias que hay entre hacerlo con una rejilla o con polígonos:

CLASIFICACIÓN CLIMÁTICA DE KÖPPEN

Vamos a hacer la clasificación climática de Köppen a partir de datos de temperatura y precipitación media mensuales.

¿Qué necesitamos?

-Polígono del país sobre el que queramos trabajar.

-Rejillas mensuales de Temperatura y precipitación media (se pueden descargar de https://www.worldclim.org/data/worldclim21.html).

Módulo para recortar un archivo grid con un polígono (Clip grid with Polygons)

Módulo Clasificación Climática de Köppen: necesita 12 meses de temperatura y precipitación.

CLASIFICACIÓN CLIMÁTICA PARA ESCENARIOS CLIMÁTICOS

En primer lugar necesitaremos datos de proyecciones climáticas de temperatura media y precipitaciones medias mensuales. Se pueden descargar de: <u>https://www.worldclim.org/data/cmip6/cmip6climate.html</u>

En nuestro caso descargaremos las de resolución de 2.5 minutos del modelo EC-Earth<u>(https://ec-earth.org/)</u> para los años 2081-2100 en el escenario más extremo que es el SSP585.

Se puede encontrar más información sobre los escenarios en: https://www.dkrz.de/en/communication/climate-simulations/cmip6-en/the-ssp-scenarios

Descargaremos los datos globales para las variables Tmin, Tmáx y Precipitación mensuales:

GCM	ssp126	ssp245	ssp370	ssp585
ACCESS-CM2	tn, tx, pr, bc			
BCC-CSM2-MR	tn, tx, pr, bc			
CMCC-ESM2	tn, tx, pr, bc			
EC-Earth3-Veg	tn, tx, pr, bc			
FIO-ESM-2-0	tn, tx, pr, bc	tn, tx, pr, bc		tn, tx, pr, bc
GFDL-ESM4	tn, tx, pr, bc		tn, tx, pr, bc	pr
GISS-E2-1-G	tn, tx, pr, bc			
HadGEM3-GC31-LL	tn, tx, pr, bc	tn, tx, pr, bc		tn, tx, pr, bc
INM-CM5-0	tn, tx, pr, bc			
IPSL-CM6A-LR	tn, tx, pr, bc			
MIROC6	tn, tx, pr, bc			
MPI-ESM1-2-HR	tn, tx, pr, bc			
MRI-ESM2-0	tn, tx, pr, bc			
UKESM1-0-LL	tn, tx, pr, bc			

2081-2100

Son archivos geotiff que contienen cada uno los 12 meses. Para extraer los meses podemos hacerlo bien con la calculadora ráster, o más sencillo, recortando con los polígonos de nuestro país que nos extraerá 12 nuevos archivos, uno para cada mes del año, de las variables Tmax, Tmin y Precipitación.

Una vez que tenemos los archivos individuales, para cada mes, de Tmax y Tmin, necesitamos calcular la temperatura media en cada punto, que viene dada por la fórmula **(Tmax+Tmin)/2.**

Para calcularla utilizaremos la calculadora raster (grib calculator).

😵 Grids		×
1. w.2.1.2.5m, prec. 2C- Earth 3-Wg_app36.2007 - 1000.00000 3. w.2.1.2.5m, prec. 2C- Earth 3-Wg_app36.2007 - 1000.00000 3. w.2.1.2.5m, prec. 2C- Earth 3-Wg_app36.2007 - 1000.00000 5. w.2.1.2.5m, prec. 2C- Earth 3-Wg_app36.2007 - 1000.00000 5. w.2.1.2.5m, prec. 2C- Earth 3-Wg_app36.2007 - 1000.00000 5. w.2.1.2.5m, prec. 2C- Earth 3-Wg_app36.2007 - 1000.00000 1. w.2.1.2.5m, prec. 2007 - 2007	 Is wc1, 2, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 210.0, 400000 Is wc1, 2, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 210.0, 400000 Is wc1, 2, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 210.0, 400000 Is wc1, 2, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 210.0, 400000 Is wc1, 2, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 210.0, 400000 Wc1, 2, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 400000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 1000000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 1000000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 1000000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 1000000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 1000000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 11000000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 11000000 Wc1, 2, m, truns, C = 4mt 3⁻¹ Vig_1mp265, 2017 - 2100, 1	Okay Cancel Bapand

Es importante prestar atención al orden en el que cargamos los archivos, pues cada uno corresponderá a la variable g1, g1, g3,

Por ejemplo, si queremos calcular la temperatura media del mes de enero, en nuestro caso según el orden que tenemos, tendremos que sumar g1 + g13 y dividirlo entre 2.

😵 Grid Calculator		×
Data Objects		Okav
Grids		Unay
Grid System	0.041667; 539x 388y; -18.145833x 27.645833y	Cancel
> Grids	24 objects (wc2.1_2.5m_tmax_EC-Earth3-Veg_ssp585_2081-2100.0.000000, wc2.1_2.5m_tmax_EC-Earth3-Veg_st	
<< Result	<create></create>	
> Grids from different Systems	No objects	Load
Options		
Formula	(g1+g13)/2	Save
Name	Calculation	Defaults
Take Formula		
Use No-Data		
Data Type	4 byte floating point number	Info >>
Formula Tet		

Hay que hacer lo anterior para el resto de los meses según:

Tmed_febrero=(g2+g14)/2

Tmed_marzo=(g3+g15)/2

.....

Tmed_diciembre=(g12+g24)/2

Con el módulo **Climate and Weather/Bioclimatology/Climate Classification** calcularemos los tipos de clima esperables según el escenario y modelo climático elegido.

