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Resources
WMO/GAW Training Materials and Best Practices for Chemical Weather/Air Quality 

Forecasting (CW-AQF) 

Version 1 Scientific Editors: Yang Zhang and Alexander Baklanov
CW-AQF guide can be downloaded from: 
https://elioscloud.wmo.int/share/s/WB9UoQ5kQK-dmgERjSAqIA
Chapter 8. Model Output and Data Management, Christoph A. Keller 
Chapter 9. Model Evaluation, K. Wyat Appel, Johannes Flemming, and Yang Zhang 

Mesoscale Modelling for Meteorological and Air Pollution Applications

Edited by Ranjeet S. Sokhi, Alexander Baklanov, K. Heinke Schlünzen
Published by Anthem Press

The book can be purchased, for example from Amazon

Selected chapters 2, 5, 6 and 7 made available for the trainees who attend the Training course. 
These chapters are only for personal use and should not be copied or circulated.

COST 728/WMO reports https://library.wmo.int/index.php?lvl=more_results&autolevel1=1

Overview of Tools And Methods For Meteorological And Air Pollution Mesoscale Model 

Evaluation and User Training Editors: K. Heinke Schlünzen and Ranjeet S Sokhi (2008)

https://elioscloud.wmo.int/share/s/WB9UoQ5kQK-dmgERjSAqIA
https://library.wmo.int/index.php?lvl=more_results&autolevel1=1


University of Hertfordshire AQF System for NCAS

D00: current day 
D01: day after 
D02: two days after 



Model outputs
Large amount of data is produced by advanced AQ models (Chemical 
Weather AQ models or chemical Transport Models) ~ 10s TB

3D Concentrations for a large number of species ~ 100 species at every 
averaging time interval (e.g. hourly) over the domain at the specified grid 
resolution

Meteorological fields over the domain at the specified grid resolution at 
every averaging time interval  e.g. wind speed and direction, precipitation, 
RH, temperature, boundary layer height and many more

Emissions data that is spatially and temporally distributed over the 3D 
domain and time (e.g. hourly)



Data management considerations

Many considerations: 
Types of outputs and variables
Horizontal grip resolution
Vertical levels, resolution
Frequency of output – averaging times
Data format
Access tools 



Data management considerations

Types of outputs and variables
concentrations for a number of species, meteorological conditions, 
process diagnostics, and customized 
regulatory species (e.g. PM2.5, O3, NO2, CO, SO2 
process related species e.g. HONO (source of OH), Aerosol Optical Depth 
(AOD), Aerosol Optical Thickness (AOT)

Horizontal grip resolution
high horizontal grid resolution is important to capture air pollutant 
spatial gradients, e.g. for NOx/NO2 and CO (pollutants that have major 
local sources) 



Data management considerations

Vertical levels, resolution
- output at the first lowest model level is usually sufficient for many air quality 

applications 
- 3D fields are important to understand processes e.g. entrainment and to capture the 
vertical structure e.g. for BL processes/dynamics and long range transport

Frequency of output
- averaging times sufficient to capture diurnal variabilities of air pollutants which is 

dependent on meteorology and source activity e.g those near roads or downwind of 
point sources

- Hourly outputs allow longer averaging statistics (e.g. daily, annual means and 
percentiles) to be generated  

Data format
Access tools 
Implications for data storage and archiving



Data management considerations

Meteorological variables
• Critical for interpreting the variations in modelled and observed pollutant 

species concentration 
• For source profiling and apportionment analysis
• To convert output units ppb < > g/m3)
• Important modelled 2m surface temperature (and vertical profile), relative 

humidity, pressure, and 10m wind speed (u and v direction), boundary layer 
height 

• Others e.g. precipitation, cloud cover, radiation, thermal stability (e.g., 
buoyancy) 

• Coupled chemistry-meteorology models - variables need to be available on 
each time step and can be output if needed



Data management considerations

Process Diagnostics 
• Most common process diagnostics are flux diagnostics e.g. emission, dry and 

wet deposition fluxes
• Other process diagnostics include chemical processes, e.g. reaction and 

photolysis rates or chemical production and loss rates 
• Important for:

• Interpretation of species concentrations
• Explain the differences among models 
• Differences  between model and observations



Data management considerations

Customized Diagnostics – Post processing
Using model input and output variables to understand air quality 
and resulting impacts, for example,
- Population exposure studies 
- Health impact studies
- Deriving source-receptor relationships 
- Understanding particle for mation and evolution
- Deriving metrics, such as, Daily means, accumulated ozone exposure over 40 

ppbv (AOT40), or sum of all hourly average concentrations at or above 60 
ppbv (SUM60), percentiles, maximum daily average 8-h (MDA8)

- Air Quality Index (AQI) or Air Quality Health Index (AQHI)
- 1-10 in the UK (10 is worst AQ)
- 0-500 in the USA (500 is worst AQ)



Data AccessNeeds to be application and user 
orientated

Many online platforms globally e.g. 
visualizations of surface concentration 
maps of air pollutants such as ozone and 
PM2.5. e.g., from the Copernicus 
Atmosphere Monitoring Service 
(CAMS) or the NASA Global Modeling 
and Assimilation Office (GMAO), UK Air 
and many others

Model output data 
- From download tools for the full 
(3-dimensional) output files
- Use of Application Programming 
Interface (API) 









Data Format

Size of air quality data files can be of large size – 100sTB !!

File formats should allow geospatial information to be handled efficiently 

Examples: Network Common Data Form (netCDF), Hierarchical Data Format 5 
(HDF5), and GRIdded Binary or General Regularly-distributed Information in 
Binary form (GRIB, GRIB2) 

These formats can be handled by common scientific data analysis software 
languages, such as IDL, MATLAB, Python, or R 



Data Format

For processed data of smaller volume other model outputs can be used -
comma separated values (csv) or text format (txt) e.g., surface concentrations of 
selected species.

Meta data 
Detailed description of the model output should be included in every data file 
(meta data)

e.g. location (lat/long/altitude), 
time in Coordinated Universal Time (UTC), 
and units for each value



Purpose of model evaluation
Overall purpose: To assess and benchmark the performance of the model 
through comparison with observations, process sensitivity studies and 
diagnostic analysis

How do you decide which evaluation approaches to use:
Know the nature of application of the model (e.g. assessment, forecasting, 
scenario analysis, research process analysis etc..)

Consult available experience and methodologies e.g.
COST 728 – Reports on WMO Publications
FAIRMODE 
AQMEII



Evaluation of model performance

Evaluating concentrations only is not 
enough for advanced, Eulerian models 
e.g. all key components should be 
evaluated including input datasets and 
pre-processing procedures

How do you decide which evaluation 
approaches to use?

Know the nature of application of the 
model (e.g. assessment, forecasting, 
scenario analysis, research process 
analysis etc..)

AQ simulation chain; the models can either 
be online coupled (dotted square) or 
chemistry and meteorology are offline 
coupled 

Sokhi et al., 2019



Atmospheric 

processes and scales

Coupling between the different 
processes and scales relevant 
for air pollution transport and 
transformation. 
The synergy of all these 
components (processes plus 
meteorological scales) results in 
the “Regional Air Quality”. 

See Chapter 7 of 
Sokhi et al (2019)



Connections of Megacities, AQ, Weather and Climate

main feedbacks, ecosystem, health & weather impact pathways, mitigations

• Science - nonlinear 
interactions and feedbacks 
between emissions, 
chemistry, meteorology and 
climate

• Multiple spatial and 
temporal scales 

• Complex mixture of 
pollutants from large 
sources

• Interacting effects of urban 
features and emissions

• Chain of meteo-hazards 
domino effects on city 
safety and social activities

Nature, 455, 142-143 (2008)



Processes (clouds, aerosols)
For variables in For applications

Met. Chem. Biol. NWP AQ Clim.

Cloud processes 
• Microphysics, dynamics, 
• In-cloud and below-cloud scavenging,
• Aqueous-phase chemistry

X X
X
X

X
X
X

X X
X
X

X
X
X

Aerosol processes 
• Chemistry
• Thermodynamics 
• Dynamics

(X)
X
X
X

(X)
(X)

X
X
X

X
X
X

Representation of aerosol–radiation–
cloud–chemistry interactions (improve
indirect estimates of aerosol effect)

X X X X X X

Relevance of better knowledge on specific processes to improve 
simulation of meteorological, chemical, biological variables

EuMetChem: Baklanov,  Schlünzen et al.



Process (emissions)
For variables in For applications

Met. Chem. Biol. NWP AQ Clim.

Meteorology-dependent emission processes 
to be described more accurately:
• Biogenic
• Sea spray
• Windblown dust
• Lightning

(X)

X
X
X
X

X

(X)

X
X
X
X

X
X
X
X

Anthropogenic emission data in urgent need 
for improvement:
• Ships
• Wild fires
• Volcanic eruptions X

X
X
X X

X
X

X
X
X

Heat fluxes sources needing better 
knowledge: 
• Wild fires 
• Volcanic eruptions

X
X

X
X

X
X

X
X

X
X

Relevance of better process descriptions to improve simulation of 
meteorological, chemical, biological variables

EuMetChem: Baklanov,  Schlünzen et al.



Evaluation of model performance
Availability of  observations:
Routine surface networks, 
field campaigns, 
Satellites
aircrafts, 
other models

Consider:
Type of stations – urban, rural, remote, traffic, industrial, residential etc… 
- location and height of stations – is it appropriate for the model? 
Model Grid resolution
Model Temporal resolution
Output species



UH AQ Forecast evaluation

PM2.5

Background Rural 3

Background Suburban 2

Background Urban 37

Industrial Suburban 0

Industrial Urban 7

Traffic Urban 18

Total 67

Total stations for all 
pollutants

135

AURN Network (2014)



Evaluation of model performance

Station Representative of the location

Related to surrounding of station and grid size of the model

Urban stations – spatial representativeness is generally less

Rural stations – spatial representativeness is generally greater



Evaluation of model performance
Available measurements – ideally we need long term hourly 
datasets of 
air pollutant concentrations 
meteorological parameters e.g. wind speed, direction, temperature, PBL height, 
RH, pressure, precipitation

Model output variables and metrics to be evaluated:
Routine gaseous species e.g. O3, NO, NO2, CO and SO2. 

Particle matter Total mass – PM10, PM2.5
Particulate species e.g. SO42-, NO3- and NH4+, EC, OC 

Deposition species e.g. 
wet and dry deposition of SO42-, NO3- and NH4+, Cl-, Na+, and O3. 



Structure of evaluation of model performance

Evaluation approaches 
depends on the detail of 
evaluation that is required:

Purpose - Science or 
assessment 

Types of evaluation, 
operational, 
dynamic, 
diagnostic, 
probabilistic Structure of a generic evaluation protocol 

Chapter 7 of Sokhi et al (2019)



Types of model performance metrics

Discrete metrics – commonly used for operational evaluation
e.g. bias, error, and correlation

Categorical metrics – used for evaluating a model in a forecast 
capacity

Usually absolute and relative evaluation metrics are used in 
combination for a more comprehensive evaluation of model 
performance. 



Evaluation of model performance
Model performance discrete metrics

Bias/error (the deviation of the forecast value from the observed value) 
Large values large deviation between the observed and forecast values 
Overestimation (+ve) or underestimation (–ve)

Correlation (assessment of the linear relationship between observed and 
forecast values). Typically 0 (no correlation) to 1 (perfect correlation)

Should be used in context e.g.
Different species
Diurnal variations
Seasonal e.g. summer vs winter
Annual
Urban, rural 



Discrete Model performance metrics



Discrete Model performance metrics



Categorical Model Evaluation Metrics



Typical operational evaluation statistics
Forecast performance indexes

• Correlation Coefficient (CORR)
• Mean error (MERR)
• Mean absolute error (MAE)
• Normalised mean error (NME)
• Root mean square error (RMSE)

• Scatter plots

Performance as compared to reference model
• Skill score (-∞ ≤ SK ≤ 1)

).(
)(1

forecastreferenceMSE

forecastMSE
SK 



Typical questions

• How many pollution episodes occurring during the test period were 
correctly forecast (“Hit rate”)?

• For what percentage of times does the AQ index forecast  predicting 
worse AQ with respect to observations?

• Exceedances – how many times did the system forecast 
exceedances, and how does this compare with the percentage 
shown in the observations? 

• What percentage of observed exceedances were hit/missed by the 
forecast? 



Exceedance forecast performance indices 
(binary events)True Positive rate (Hit Rate)

TPR=A/M

False Positive rate
FPR=(F-A)/(N-M)

False Alarms
FA=(F-A)/F

Success index (-1 to +1)
SI=TPR-FPR Threshold Limits

Daily mean PM2.5 = 25 μg/m3
N = Total number of days considered
M = Observed exceedances
F = Forecasted / predicted exceedances
A = correctly predicted exceedances

Measured

Yes No Total

Fo
re

ca
st

Yes A F-A F

No M-A (N-M)-(F-A) N-F

Total M N-M N



Daily mean PM2.5 time series 

Rural

Urban

Time series analysis
Diurnal variations
Visual inspection 



Typical scatter plot (Hourly PM2.5)



PM2.5 comparison statistics
Box whisker plots

Statistics calculated at 40 PM2.5 
background sites (2014)



Example of CMAQ run 
over the UK

Representing discrete metrics spatially 



Sensitivity analysis for two different boundary conditions with CMAQ 
over the USA

Global and regional Earth-
system Monitoring (GEMS)

GEOS-Chem (GC) 



Bias of O3 at Mace Head: MACC vs CMAQ

With Ricardo and KCL

Sensitivity 
analysis
BC for two 
different grid 
resolutions 

50 km 10 km



MEGAPOLI Paris Measurement Campaigns

• Surprisingly low fine PM levels
• 70% of fine PM mass is transported into megacity from continental Europe
• Fossil fuel combustion contributes only little to organic fine PM
• Large fraction of carbonaceous aerosol is of secondary biogenic origin
• Cooking and, during winter, residential woodburning are the major primary OA
• BC concentrations are on the lower end of values encountered in megacities worldwide.

(Beekmann et al., ACP, 2015)

• Aim: Provide new experimental data to better quantify sources of primary and secondary carbonaceous 
aerosol in a megacity and its plume. Duration: Summer – 1-31 Jul 2009, Winter – 15Jan-15Feb 2010 

• 30 research institutions from France and other European countries, MEGAPOLI Teams & Collaborators

(Courtesy of Monica Crippa et al.; PSI Team)

Chemical 
species



Model Evaluation  - New Developments
Satellite data

Biggest advantage
Spatial coverage

Can provide data where in-situ measurements are not available
Information from the entire column of the atmosphere
useful for AOD, NO, NO2, O3, dust, fire plumes etc….

Disadvantages
Sometimes satellites only produce data on narrow swaths and can take several days to 

cover an area 
Lack of sensitivity to ground level concentrations
Concentrations based on algorithms and hence not a direct measurements
Hence satellite data can be treated a ‘model data’ with their own uncertainty and bias
Problems with deep clouds



Model Evaluation  -
Ensemble Evaluation Approaches

Multiple simulations for a single time period and location, while varying 
other aspects of the model simulation e.g. 

Meteorology (different meteorology models, different meteorology 
configuration options, etc.) 
Different emission inputs, 
Different boundary conditions, or 
Different CW-AQ model configuration options 



Model Evaluation  -
Ensemble Evaluation Approaches

Approaches

Brute force - where the model is simply run many times, each time varying some 
aspects of the model simulation 

Decoupled direct method (DDM)

Sensitivity analysis technique for computing sensitivity coefficients 
simultaneously while air pollutant concentrations are being 
computed
Allows for the computation of the impact (sensitivity) of the model 
to an input perturbation (typically emission perturbations) using a 
single model simulation 
More efficient computationally efficient than running the equivalent 
brute-force simulations



Model Evaluation  -
Ensemble Evaluation Approaches

Ensembles can help in understanding: 

Structure uncertainty - lack of knowledge regarding the fundamental 
mechanisms underlying an environmental process (i.e. ensembles by varying a 
single process

Parametric uncertainty - uncertainty in the inputs and parameter values 
(ensembles by varying an input or parameter used)

Example:

Pinder et al., 2009 



Model Evaluation  -
Ensemble Evaluation Approaches

Chapter 7 of Sokhi et al (2019)

Average ensemble for NO2  from five models



Model Evaluation Tools
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