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Data assimilation in a classical form:
a bird’s view

• The approach designed for meteorological forecasting
 Corrects the model state, i.e. the predicted variables (T,q,U,V,p,...)

 Works there

time

__ free-model run
__ run with assim.
__ fcst with assim.
__ fcst with fusion

observations



AC problem is bulky...

“He inhaled a breath of humid morning breeze and let in
nitrogen, oxygen, argon, xenon & radon, steam,
carbon monoxide, nitrogen dioxide, tetra-ethyl lead,
benzene, some mould spores, a bacteria fleet,
anonymous body hair, a pigeon ectoparasite,
anemophilous pollen, a drop of sulphur dioxide flown
from a distant factory, and a particle of dust carried
by the night sirocco.
In other words he breathed air of the city”

(Stefano Benni "Achille piè veloce", Mondadori, Italy, 
2003) 
Courtesy of G.D’Amato



...and much worse observed

• Chemical-system state vector contains concentrations of 
numerous species…
 Note ~10 basic meteorological variables for physical state 

description vs >100 chemical species in a basic chemical scheme 
(~10,000,000 species in master chemical mechanism)

 A minuscule fraction of those is actually observed / observable

Daily count of observations in ERA-Interim

 o3 no2 pm25 pm10 so2 
20161101 9839 11424 3746 8628 5826 

 

Daily count of observations in CAMS: example of 1.11.2016



Chemistry scheme for SOx/NOx/NHx

More of organic chemistry



Model variables and parameters
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What do we observe?

More of organic chemistry
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Spatial and temporal scales in AC
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...and much worse observed

• Chemical-system state vector contains concentrations of 
numerous species…

• … and constraining this vector is not enough: 
 forced motion of this non-autonomous system may be (and often 

is) the most significant

 the own system relaxation is often fast and quickly eliminate the 
effect of DA



Memory of the troposphere
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Pollen test case (no chemistry)

• Season 2018

• Birch

• Europe

• Resolution ~20 km  1 hr

• Runs
 standard

 midnight perturbation: 00:00 20.04.2018 all concentrations * 10
 mid-day perturbation: 12:00 20.04.2018 all concentrations * 10

• Remark: extreme case, usual data assimilation is much 
more conservative



Birch hindcast with SILAM, 2018



Time series
__ reference
__ night perturb
__ day perturb



Summary 1

• Classical assimilation of concentrations makes little sense: 
the model forgets the impact much too fast

• Reason: mathematically, the system has short relaxation 
time, thus being driven by external forcing rather than by 
initial conditions



• Area with above-threshold 200 µg m-3 ash
concentrations

• The light blue areas are computed with ERA-
Interim

• The light red areas are computed with IFS
• The dark purple colour indicates the areas where

the threshold is exceeded using both datasets

Emergency (and not only) applications

• Sharp edges of the plumes, high-frequency variability

• Small uncertainty in wind fields generates incompatible 
predictions

• Example: hypothetical Etna eruption, plume predicted with 
two meteorological datasets: ECMWF ERA-Interim and 
ECMWF operational IFS



Summary 2. 

• The atmospheric composition problem is:
 non-autonomous

 non-linear

 has nearly full frequency spectrum of processes from 1/sec to 1/year 
closely related to spatial resolution

 has relaxation towards the forced motion of a few hours in the 
troposphere, a year in the stratosphere

• Observed <10% of species, strong ties with non-observed ones
 several reservoir species, in-essence, none observed

 observations primarily near-surface (in-situ) or column-integrated 
(nadir-looking satellites)

• Depending on the problem, distribution function can be strongly 
non-Gaussian, e.g. bi-modal in emergency applications



How to handle such system? 

• Ignore the difficulties and apply known techniques with 
available observations. State estimation with 
 OI / 3D-VAR

• Account for the system constraints and chemical links. 
State estimation with
 4D-VAR / EnKF

• Expand the control variable 
 include emission fluxes

 include meteorology

• Consider non-classical forms of “DA-looking” techniques
 data fusion

 optimised ensemble 



Business as usual

• How bad are the problems? 

• Task: the state estimation with in-situ or satellite-column 
data for available species

• Example: 
 SILAM chemistry transport model

 European domain

 Technique: 3D-VAR



3D-VAR outcome for NO2, O3, SO2

NO2

O3

SO2

control                     analysis                difference



Non-observed species? Scores?

RMSE (μg/m3) Reference
Forecast, no DA

Analysis Forecast with 
DA

O3 29.1 22.2 26.6

NO2 19.3 17.5 18.5

SO2 5.88 5.64 5.99

PM2.5 10.1 9.21 9.33

SO4

control                                   difference



Real-life AQ case: China
• Model inter-comparison, PM2.5

 China, 800 stations

 scores over 1-14.03.2016

4D-VAR, column AOD from 
low-orbit satellite
too infrequent, system 
relaxes to forced motion

MEAN

StDev

Corr

RMSE



In-depth with SOx issue

• SILAM experiment 8-22.02.2006

• 3D-VAR, 4D-VAR

• state estimation problem

SO2 emission                       SO2 observations



Effect of complexity: 3D-VAR vs 4D-VAR

• SO2 near-surface concentration, changes due to DA

4D-VAR
diagonal error covariance

3D-VAR
non-diagonal error covariance



Effect on scores



Can we assimilate PM?

• PM is a sum of several species, i.e. not a system predicted 
variable or parameter, cannot be a control variable

• Let’s create a assimilation-PM, which can have positive 
and negative concentrations
 that one can serve as a control variable.

 we cannot propagate the correction to the model state

 … but we can advect and deposit this aPM

• Examples: 
 operational SILAM analysis within Copernicus Atmospheric 

Monitoring Service

 MarcoPolo model intercomparison for China



SILAM setup in CAMS analysis

• European domain

• 10km resolution

• daily analysis of the last-day data

• in-situ observations of NO2, SO2 O3, PM2.5, PM10. 

• 3D-VAR

• error covariance as before: non-diagonal in all spatial 
dimensions

• hourly update of the model state with no chemistry at the 
state update step 

• full chemistry during the model time integration between 
the assimilation steps



PM2.5 last Sunday: observations



Recent examples of SILAM CAMS reanslysis

↑ Forecast

← Analysis



Zoom towards high-variability area

Observations                          Forecast                                  analysis 3D-VAR



How to handle such system? 

• Ignore the difficulties and apply known techniques with 
available observations. State estimation with 
 OI / 3D-VAR

• Account for the system constraints and chemical links. 
State estimation with
 4D-VAR / EnKF

• Expand the control variable: find what has longer impact
 include emission fluxes

 include meteorology

• Consider non-classical forms of “DA-looking” techniques
 data fusion

 optimised ensemble 



Expand the control variable

• Reminder:
 predicted variables are concentrations of many species

 their assimilation does not make much sense due to short model 
memory

• Can we find something that does have a longer impact?

• Controlling parameters:
 emission fluxes

 meteorological data

 model internal parameters and coefficients



Source term inversion

time

__ free-model run
__ run with assim.
__ fcst with assim.
__ fcst with fusion

observations



Emission correction factor

• Same SOx experiment, now with 4D-VAR towards 
emission

  
 1 

Day 1 correction                                    Weeks 1-2 mean correction



Comparison of the approaches

  
 1 

reference run

3D-VAR

4D-VAR state+emissoin
Site: AT 9, Austria                    Site:  IT 17, Italy

Obs



African emission experiment

• Experiment concept: construct African emission from 
scratch, without any prior knowledge

• Input: MODIS AOD, full 2016

• Starting point: constant homogenous emission all over 
domain

• Method: SILAM EnKF assimilation of emission correction 
factor

• Evaluation: Aeronet for full 2018



AODPM emission



SILAM 
old

SILAM 
test

SILAM 
2018

SDS-WAS 
median

Sahel/Sahara 0.39 0.34 0.30 0.31

Middle East 0.42 0.27 0.26 0.33

Mediterranean 0.20 0.15 0.18 0.15

All regions 0.35 0.29 0.26 0.28

SILAM 
old

SILAM 
test

SILAM 
2018

SDS-WAS 
median

Sahel/Sahara 0.39 0.42 0.47 0.75

Middle East 0.13 0.56 0.56 0.52

Mediterranean 0.60 0.57 0.56 0.72

All regions 0.44 0.47 0.52 0.74

SILAM 
old

SILAM 
test

SILAM 
2018

SDS-WAS 
median

Sahel/Sahara -0.22 -0.15 -0.03 -0.18

Middle East -0.21 -0.10 -0.02 -0.18

Mediterranean -0.14 0.00 0.06 -0.10

All regions -0.20 -0.10 0.00 -0.16

SILAM 
old

SILAM 
test

SILAM 
2018

SDS-WAS 
median

Sahel/Sahara 0.88 0.59 0.49 0.56

Middle East 0.88 0.43 0.37 0.56

Mediterranean 1.16 0.43 0.44 0.85

All regions 0.96 0.53 0.46 0.64

RMSE Correlation coefficient

Bias Fractional gross error

Evaluation model run outperforms not only SILAM operational skills but
also SDS-WAS ensemble (over 10 models!)



How to handle such 
system? 

• Ignore the difficulties and apply known techniques with 
available observations. State estimation with 
– OI / 3D-VAR

• Account for the system constraints and chemical links. State 
estimation with
– 4D-VAR / EnKF

• Expand the control variable: find what has longer impact
– include emission fluxes
– include meteorology

• Consider non-classical forms of “DA-looking” techniques
– data fusion
– optimised ensemble 



Ways of involving observations

• Data assimilation

• Data fusion

time

time

__ free-model run
__ run with assim.
__ fcst with assim.
__ fcst with fusion

observations



Data fusion vs data assimilation

• DA: data are used to adjust model internal variables, 
parameters or forcing
 model is “informed” about deviation from the observations and

asked to behave better

• DF: data are used to adjust model output after the
simulations are finished
 model has no clue about its errors, it runs without feedback from 

observations

 all corrections are applied as post-processing of the model 
predictions

• A simple example: bias correction

• Promising: error of model predictions (e.g., bias) can be 
less varying than the predictions themselves



Ensemble-based data fusion: works!

Weights of individual 
models

Error of individual models, simple and optimised 
ensemble



Summary

• Atmospheric composition is tough for data assimilation:
violates almost all assumptions behind DA methods
 non-linear, non-autonomous, non-Gaussian, correlated errors, very 

small fraction of observed phase space

• Classic methods give <20% of improvement for the 
analysis, next to nothing for the follow-up forecast
 Still, useful in some (few) applications

• Expansion of control variable is among the most-promising 
approaches
 Has longer forecasting horizon and wider correlation distance
 Own complexity: adjoint and ensemble generation

• Data fusion technology shows very promising first results
 can be applied together with data assimilation: fully independent 

approach


