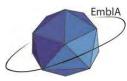


LMATIETEEN LAITOS METEOROLOGISKA INSTITUTET TINNISH METEOROLOGICAL INSTITUTE



Data assimilation (DA) for atmospheric composition (AC)

M.Sofiev,

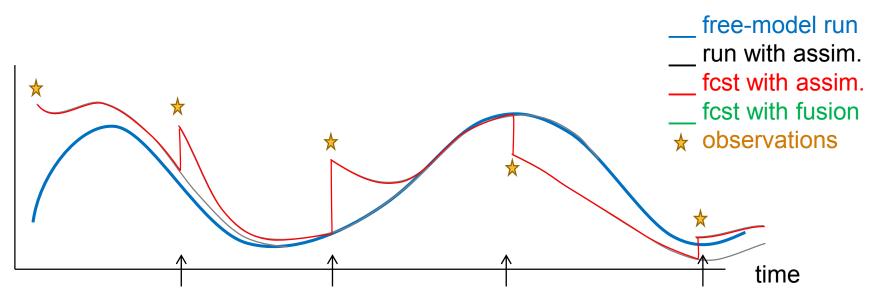
with material from J.Vira, A.Uppstu

Outline

- Introduction: DA from the bird's view
- Atmospheric composition model as a part of Earth-System model
- Challenges from the DA viewpoint
- Approaches to perform DA for the system violating basic assumptions
- Illustrations
 - Control variable selection
 - > Technique selection
- Summary

Data assimilation in a classical form: a bird's view

- The approach designed for meteorological forecasting
 - Corrects the model state, i.e. the predicted variables (T,q,U,V,p,...)
 - > Works there



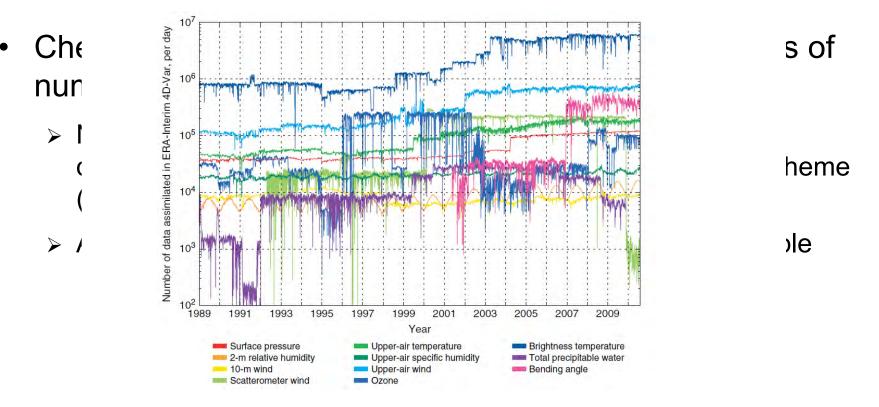
AC problem is bulky...

"He inhaled a breath of humid morning breeze and let in nitrogen, oxygen, argon, xenon & radon, steam, carbon monoxide, nitrogen dioxide, tetra-ethyl lead, benzene, some mould spores, a bacteria fleet, anonymous body hair, a pigeon ectoparasite, anemophilous pollen, a drop of sulphur dioxide flown from a distant factory, and a particle of dust carried by the night sirocco.

In other words he breathed air of the city"

(Stefano Benni "*Achille piè veloce*", Mondadori, Italy, 2003) Courtesy of G.D'Amato

...and much worse observed

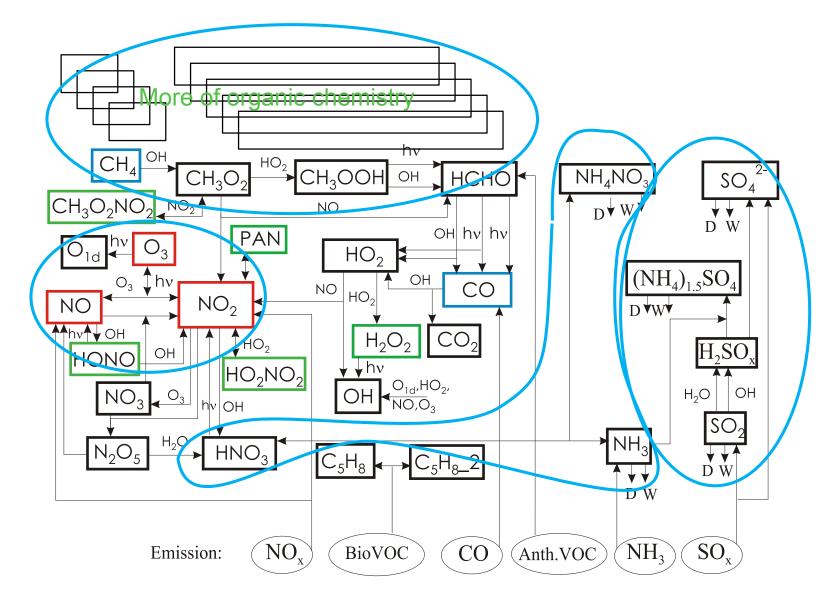


Daily count of observations in ERA-Interim

	о3	no2	pm25	pm10	so2
20161101	9839	11424	3746	8628	5826

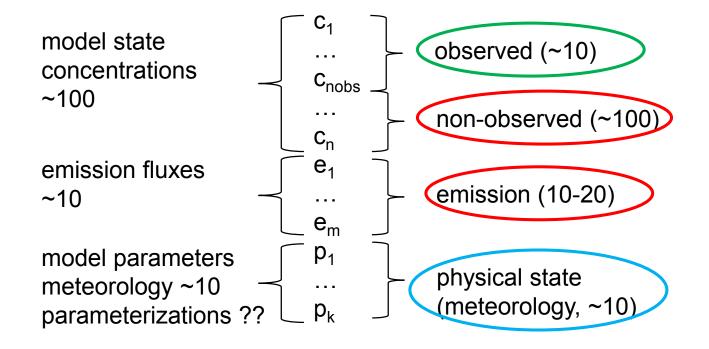
Daily count of observations in CAMS: example of 1.11.2016

Chemistry scheme for SOx/NOx/NHx



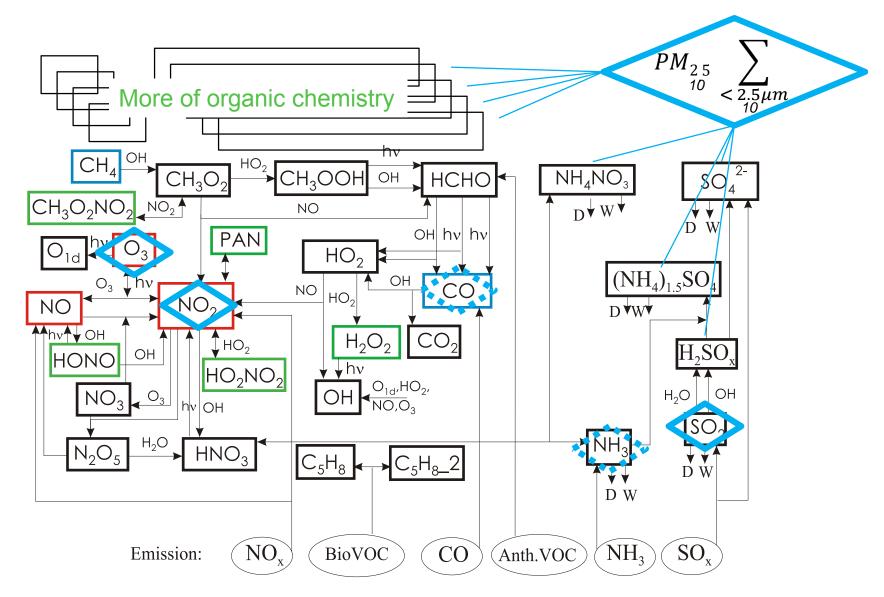
Model variables and parameters

Model variables

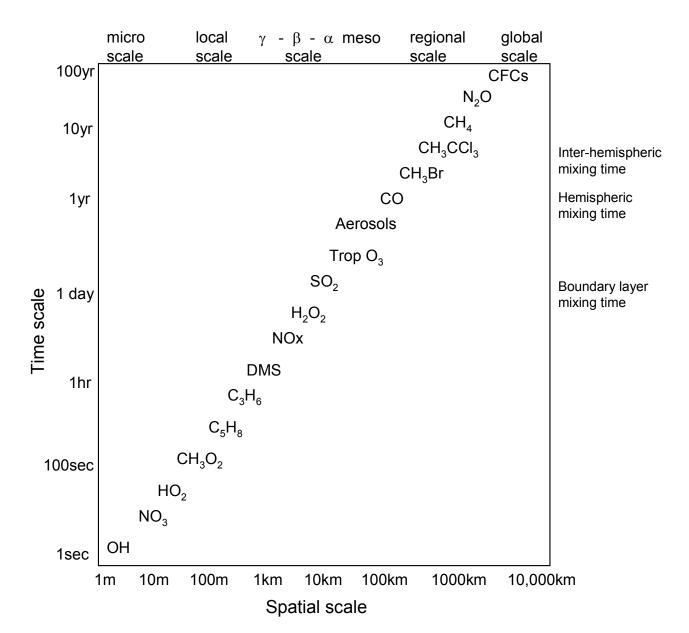


Each variable is a map of 10⁶ - 10⁸ grid cells

What do we observe?



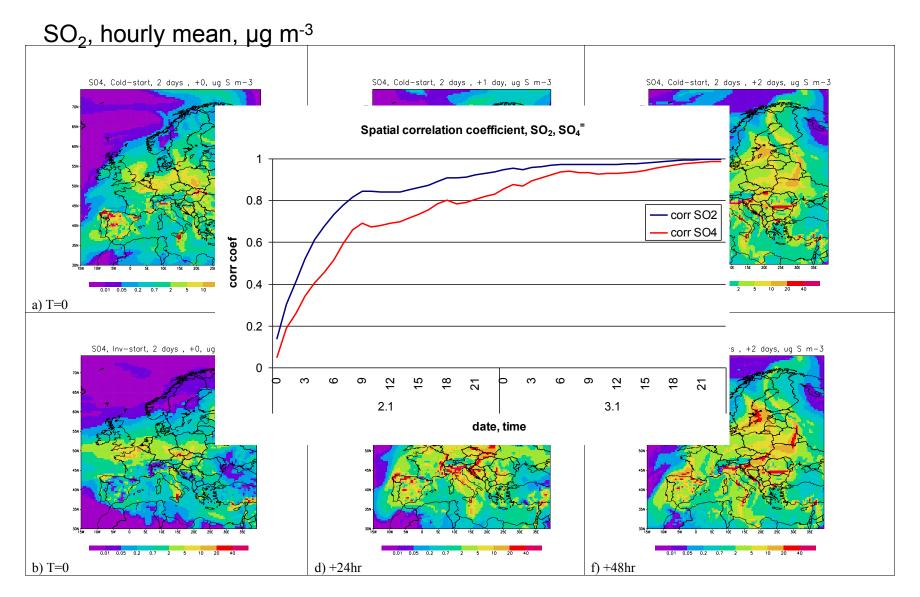
Spatial and temporal scales in AC



...and much worse observed

- Chemical-system state vector contains concentrations of numerous species...
- ... and constraining this vector is not enough:
 - forced motion of this non-autonomous system may be (and often is) the most significant
 - the own system relaxation is often fast and quickly eliminate the effect of DA

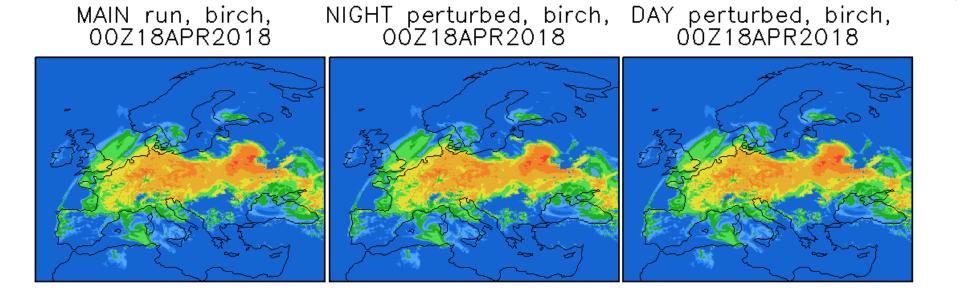
Memory of the troposphere



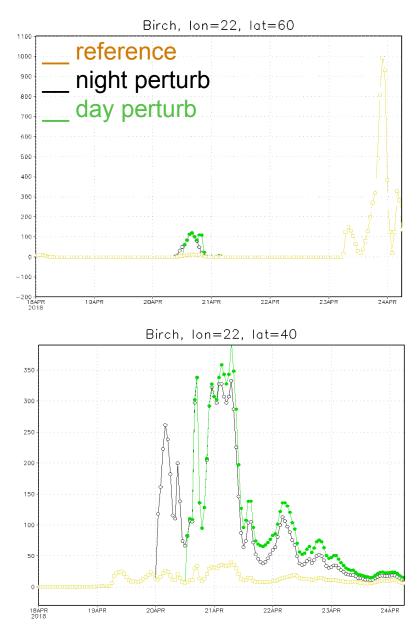
Pollen test case (no chemistry)

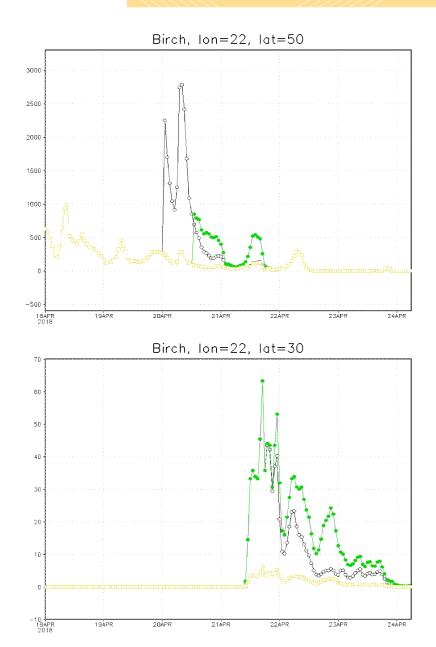
- Season 2018
- Birch
- Europe
- Resolution ~20 km × 1 hr
- Runs
 - standard
 - midnight perturbation: 00:00 20.04.2018 all concentrations * 10
 - > mid-day perturbation: 12:00 20.04.2018 all concentrations * 10
- Remark: extreme case, usual data assimilation is much more conservative

Birch hindcast with SILAM, 2018



Time series



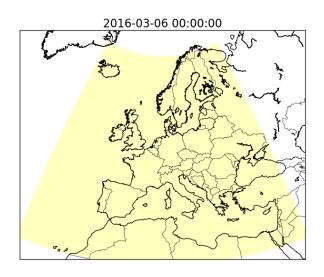


Summary 1

- Classical assimilation of concentrations makes little sense: the model forgets the impact much too fast
- Reason: mathematically, the system has short relaxation time, thus being driven by external forcing rather than by initial conditions

Emergency (and not only) applications

- Sharp edges of the plumes, high-frequency variability
- Small uncertainty in wind fields generates incompatible predictions
- Example: hypothetical Etna eruption, plume predicted with two meteorological datasets: ECMWF ERA-Interim and ECMWF operational IFS



- Area with above-threshold 200 µg m⁻³ ash concentrations
- The light blue areas are computed with ERA-Interim
- The light red areas are computed with IFS
- The dark purple colour indicates the areas where the threshold is exceeded using both datasets

Summary 2.

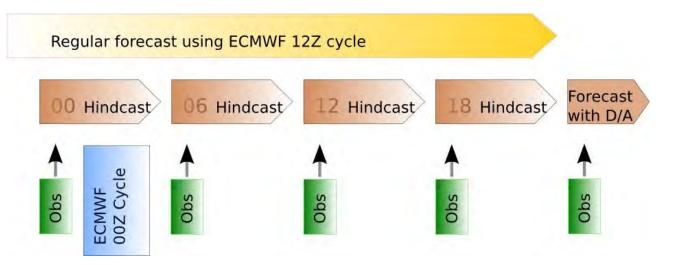
- The atmospheric composition problem is:
 - > non-autonomous
 - ▹ non-linear
 - has nearly full frequency spectrum of processes from 1/sec to 1/year closely related to spatial resolution
 - has relaxation towards the forced motion of a few hours in the troposphere, a year in the stratosphere
- Observed <10% of species, strong ties with non-observed ones
 - > several reservoir species, in-essence, none observed
 - observations primarily near-surface (in-situ) or column-integrated (nadir-looking satellites)
- Depending on the problem, distribution function can be strongly non-Gaussian, e.g. bi-modal in emergency applications

How to handle such system?

- Ignore the difficulties and apply known techniques with available observations. State estimation with
 - > OI / 3D-VAR
- Account for the system constraints and chemical links.
 State estimation with
 - > 4D-VAR / EnKF
- Expand the control variable
 - include emission fluxes
 - include meteorology
- Consider non-classical forms of "DA-looking" techniques
 - data fusion
 - optimised ensemble

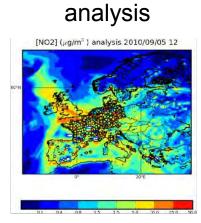
Business as usual

- How bad are the problems?
- Task: the state estimation with in-situ or satellite-column data for available species
- Example:
 - SILAM chemistry transport model
 - European domain
 - > Technique: 3D-VAR

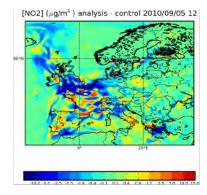


3D-VAR outcome for NO₂, O₃, SO₂

control [NO2] (µg/m³) control 2010/09/05 12

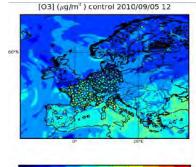


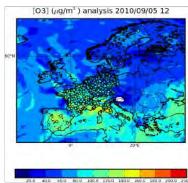
difference

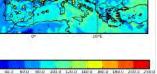


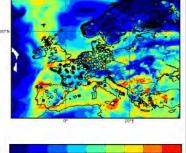
O₃

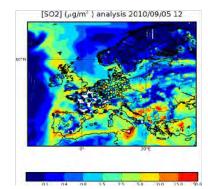
SO₂



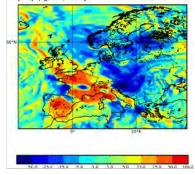




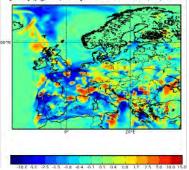




[O3] (µg/m³) analysis - control 2010/09/05 12



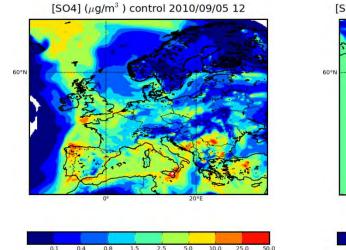
[SO2] (µg/m³) analysis - control 2010/09/05 12



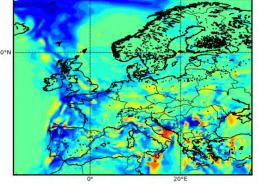
Non-observed species? Scores?

control

difference



[SO4] (µg/m³) analysis - control 2010/09/05 12



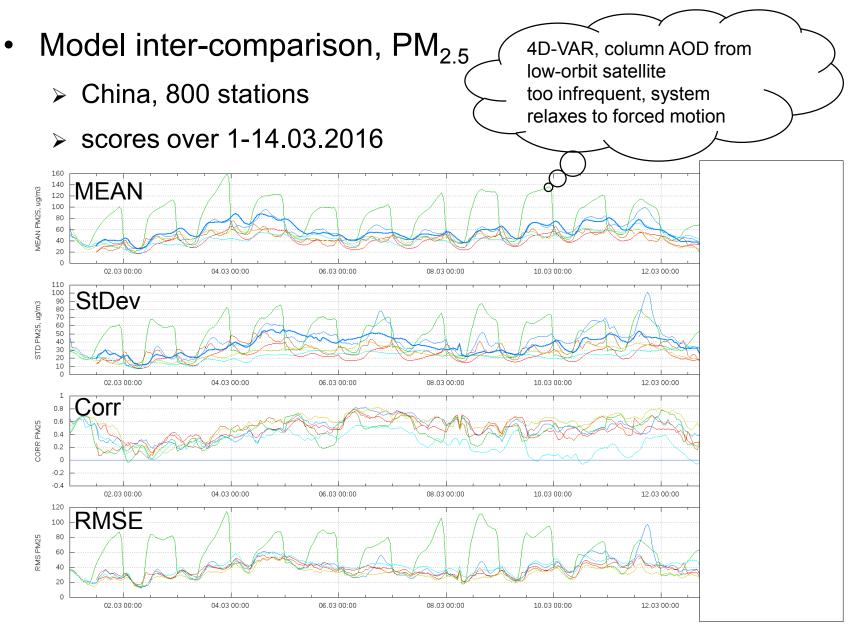
10.0 -5.0 -2.5 -1.5 -0.8 -0.4 -0.1 0.1 0.4 0.8 1.5 2.5 5.0

10.0 15.0

 SO_4

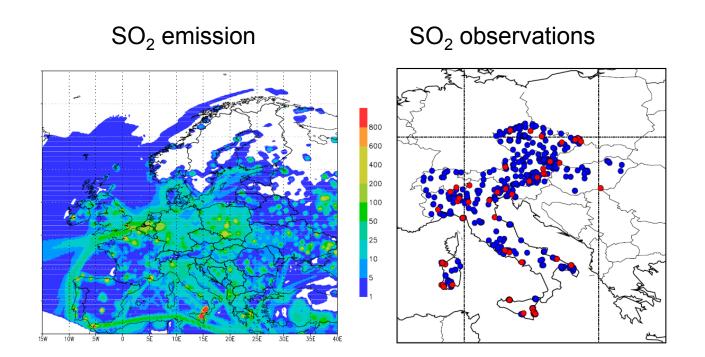
RMSE ($\mu g/m^{3}$)	Reference Forecast, no DA	Analysis	Forecast with DA
03	29.1	22.2	26.6
NO2	19.3	17.5	18.5
SO2	5.88	5.64	5.99
PM2.5	10.1	9.21	9.33

Real-life AQ case: China



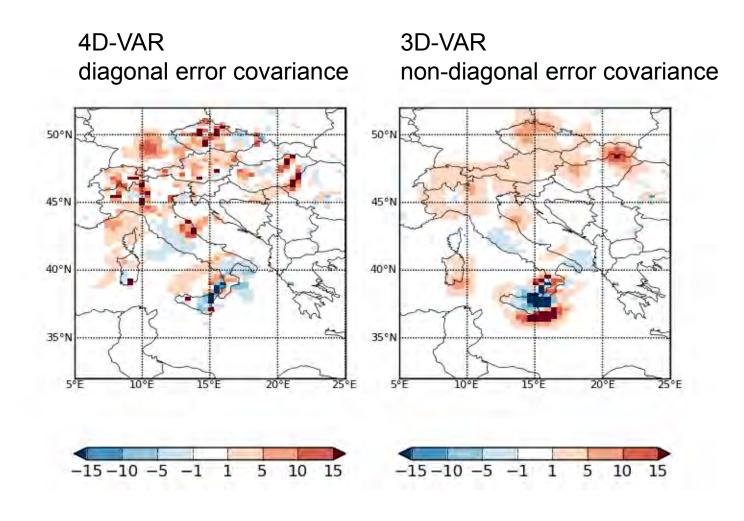
In-depth with SOx issue

- SILAM experiment 8-22.02.2006
- 3D-VAR, 4D-VAR
- state estimation problem

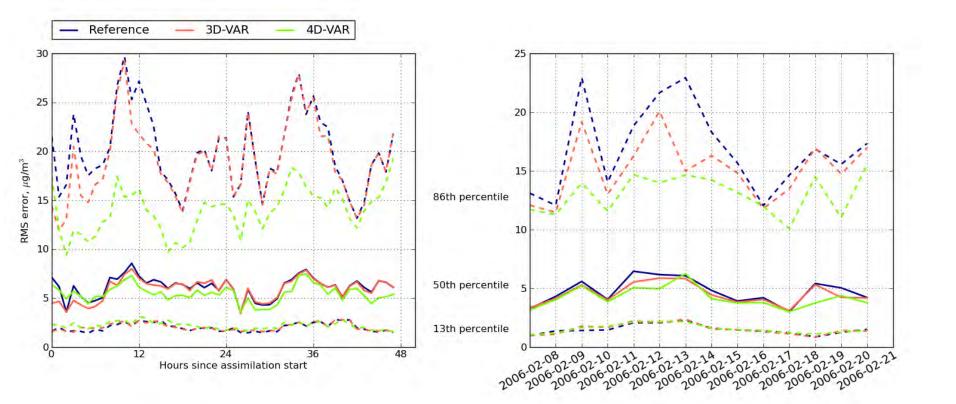


Effect of complexity: 3D-VAR vs 4D-VAR

• SO₂ near-surface concentration, changes due to DA



Effect on scores



Can we assimilate PM?

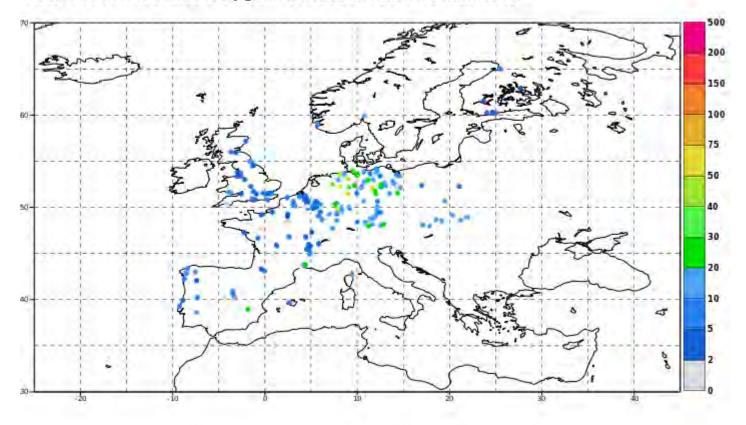
- PM is a sum of several species, i.e. not a system predicted variable or parameter, cannot be a control variable
- Let's create a assimilation-PM, which can have positive and negative concentrations
 - \succ that one can serve as a control variable.
 - > we cannot propagate the correction to the model state
 - > ... but we can advect and deposit this aPM
- Examples:
 - operational SILAM analysis within Copernicus Atmospheric Monitoring Service
 - MarcoPolo model intercomparison for China

SILAM setup in CAMS analysis

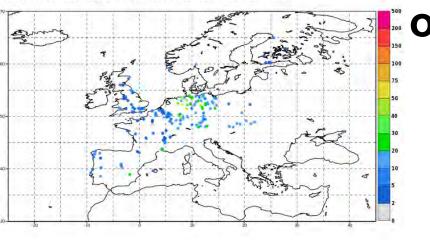
- European domain
- 10km resolution
- daily analysis of the last-day data
- in-situ observations of NO₂, SO₂ O₃, PM_{2.5}, PM₁₀.
- 3D-VAR
- error covariance as before: non-diagonal in all spatial dimensions
- hourly update of the model state with no chemistry at the state update step
- full chemistry during the model time integration between the assimilation steps

PM_{2.5} last Sunday: observations

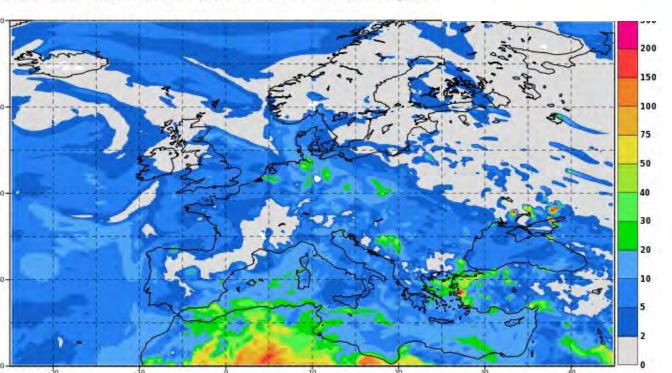
CAMS Observations VT: Sunday 04 June 2017 01UTC Surface PM2.5 Aerosol [µg/m3] N:186 mean:10.8 max:63.8



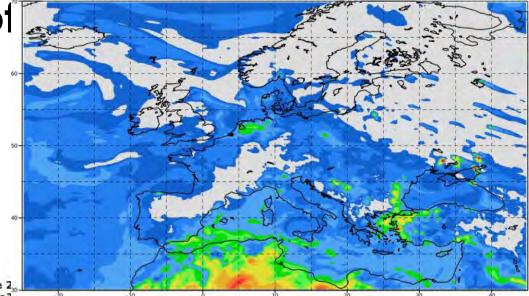
CAMS Observations VT: Sunday 04 June 2017 01UTC Surface PM2.5 Aerosol [µg/m3] N:186 mean:10.8 max:63.8



Monday 05 June 2017 00UTC CAMS Analysis t-023 VT: Sunday 04 June 23. Model: SILAM Height level: Surface Parameter: PM2.5 Aerosol [µg/m3



Sunday 04 June 2017 00UTC CAMS Forecast t+001 VT: Sunday 04 June 2017 01UTC Model: SILAM Height level: Surface Parameter: PM2.5 Aerosol [µg/m3]



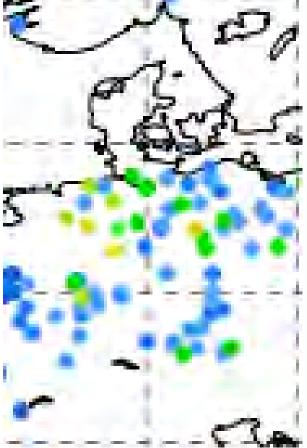
Forecast

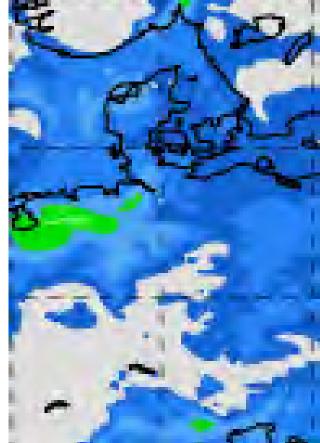
Zoom towards high-variability area

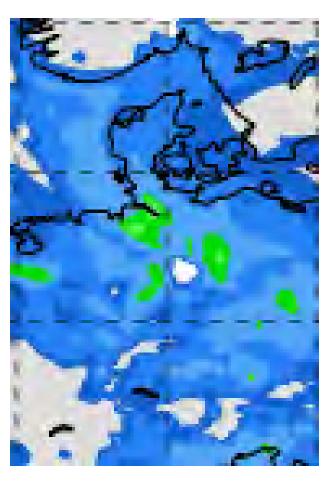
Observations

Forecast

analysis 3D-VAR







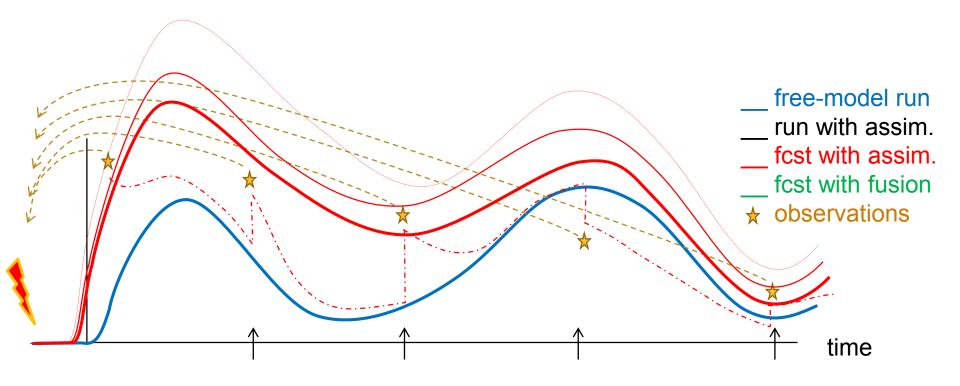
How to handle such system?

- Ignore the difficulties and apply known techniques with available observations. State estimation with
 > OI / 3D-VAR
- Account for the system constraints and chemical links. State estimation with
 - > 4D-VAR / EnKF
- Expand the control variable: find what has longer impact
 - include emission fluxes
 - include meteorology
- Consider non-classical forms of "DA-looking" techniques
 - data fusion
 - optimised ensemble

Expand the control variable

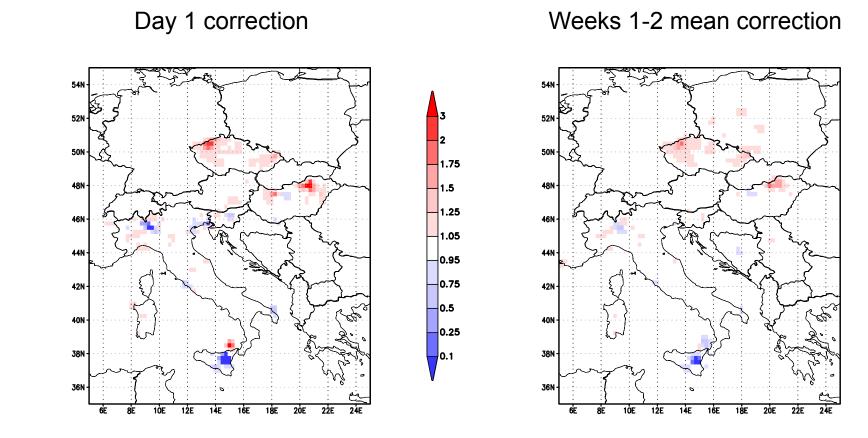
- Reminder:
 - predicted variables are concentrations of many species
 - their assimilation does not make much sense due to short model memory
- Can we find something that does have a longer impact?
- Controlling parameters:
 - > emission fluxes
 - meteorological data
 - > model internal parameters and coefficients

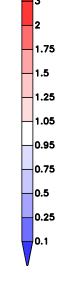
Source term inversion



Emission correction factor

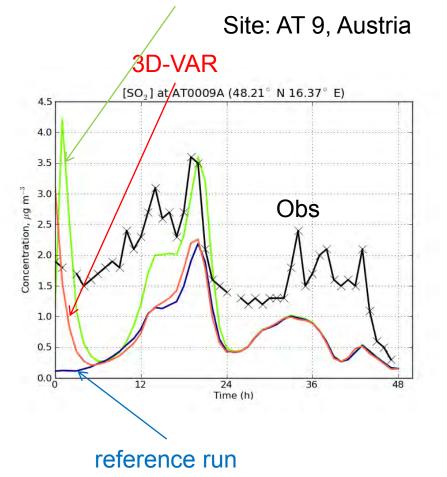
 Same SOx experiment, now with 4D-VAR towards emission



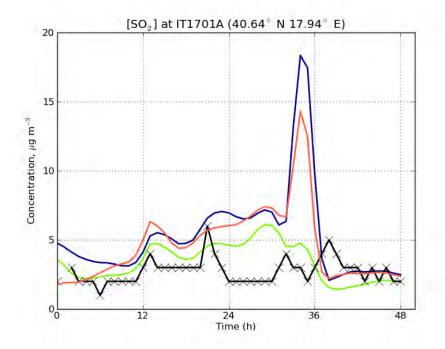


Comparison of the approaches

4D-VAR state+emissoin



Site: IT 17, Italy

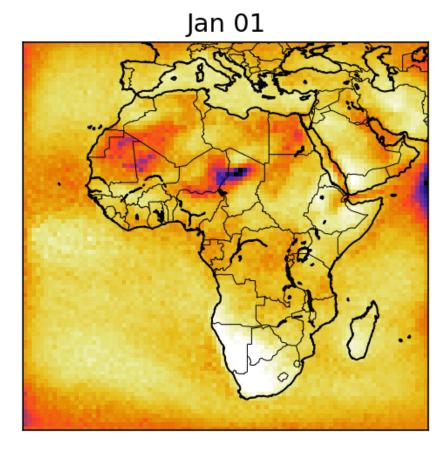


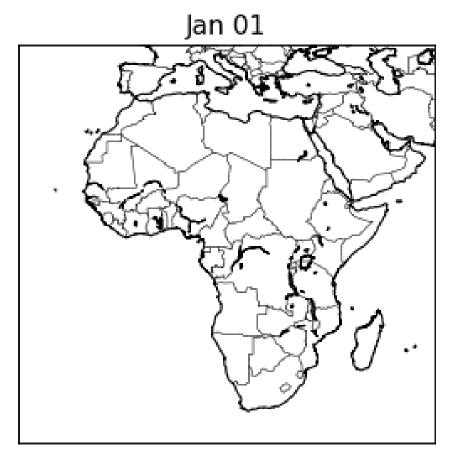
African emission experiment

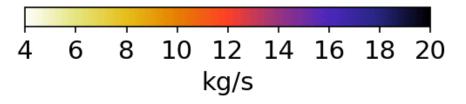
- Experiment concept: construct African emission from scratch, without any prior knowledge
- Input: MODIS AOD, full 2016
- Starting point: constant homogenous emission all over domain
- Method: SILAM EnKF assimilation of emission correction factor
- Evaluation: Aeronet for full 2018

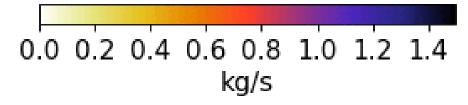
PM emission

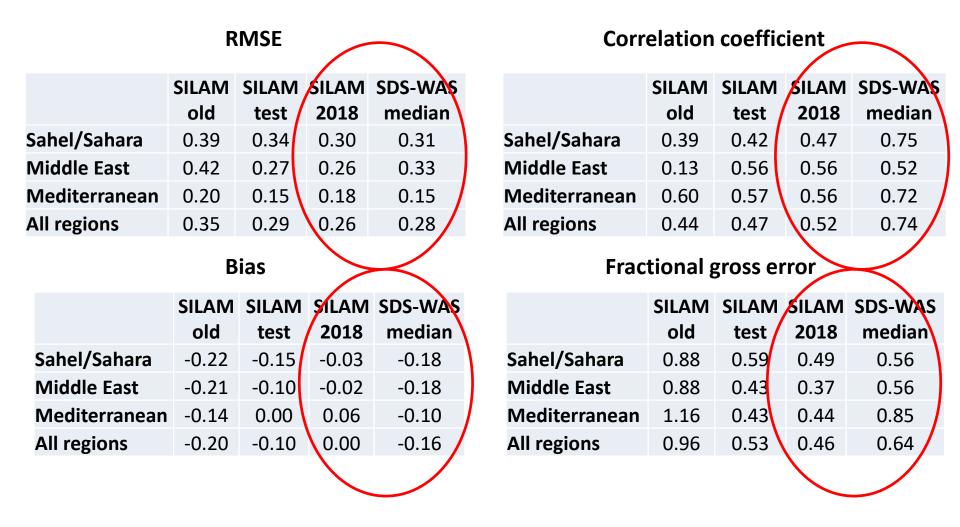
AOD









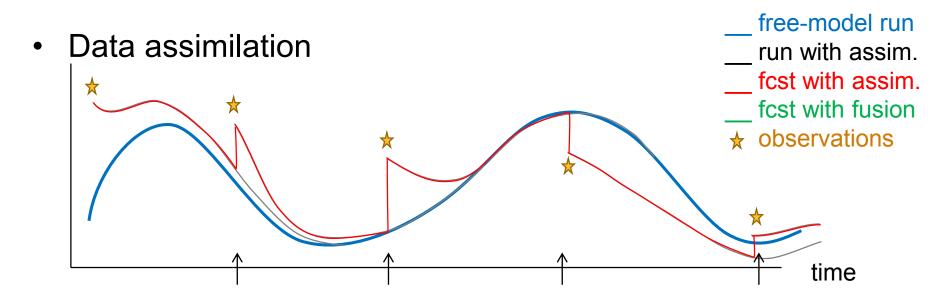


Evaluation model run outperforms not only SILAM operational skills but also SDS-WAS ensemble (over 10 models!)

How to handle such system?

- Ignore the difficulties and apply known techniques with available observations. State estimation with
 - OI / 3D-VAR
- Account for the system constraints and chemical links. State estimation with
 - 4D-VAR / EnKF
- Expand the control variable: find what has longer impact
 - include emission fluxes
 - include meteorology
- Consider non-classical forms of "DA-looking" techniques
 - data fusion
 - optimised ensemble

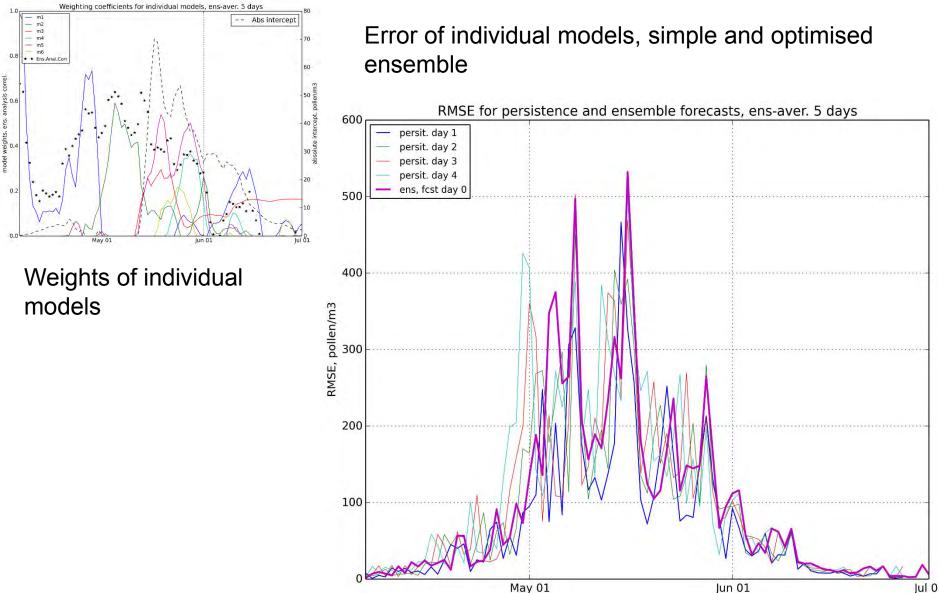
Ways of involving observations



Data fusion vs data assimilation

- DA: data are used to adjust model internal variables, parameters or forcing
 - model is "informed" about deviation from the observations and asked to behave better
- DF: data are used to adjust model output after the simulations are finished
 - > model has no clue about its errors, it runs without feedback from observations
 - > all corrections are applied as post-processing of the model predictions
- A simple example: bias correction
- Promising: error of model predictions (e.g., bias) can be less varying than the predictions themselves

Ensemble-based data fusion: works!



Summary

- Atmospheric composition is tough for data assimilation: violates almost all assumptions behind DA methods
 - non-linear, non-autonomous, non-Gaussian, correlated errors, very small fraction of observed phase space
- Classic methods give <20% of improvement for the analysis, next to nothing for the follow-up forecast
 - Still, useful in some (few) applications
- Expansion of control variable is among the most-promising approaches
 - Has longer forecasting horizon and wider correlation distance
 - > Own complexity: adjoint and ensemble generation
- Data fusion technology shows very promising first results
 - can be applied together with data assimilation: fully independent approach