

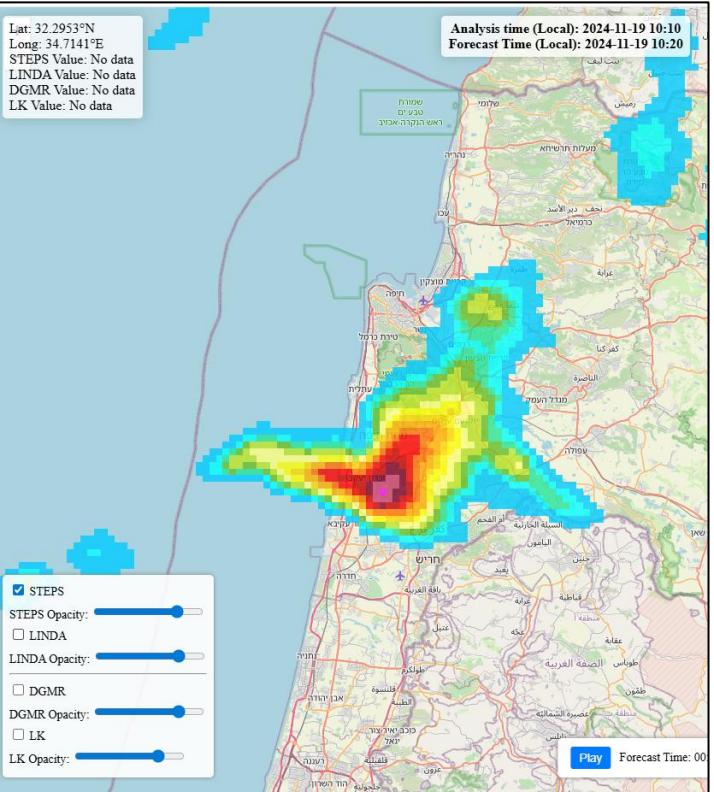
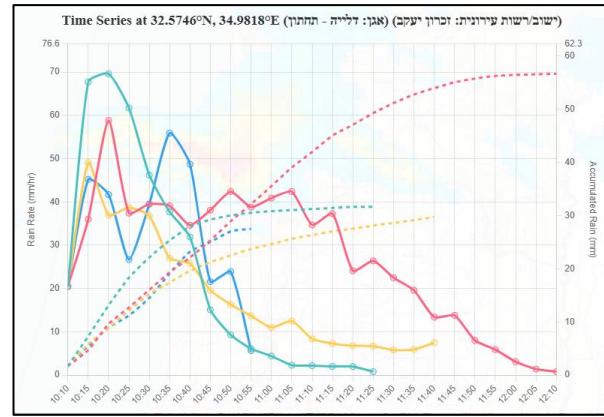
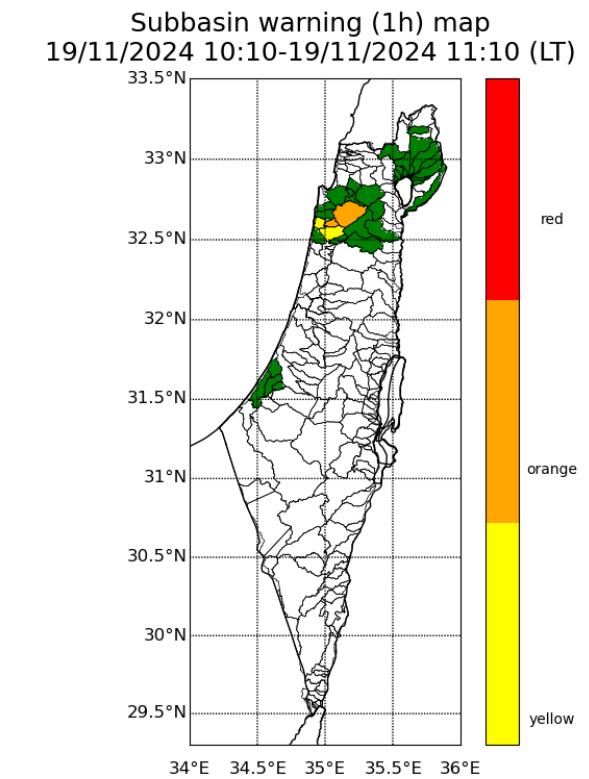
Radar Nowcasting Methods

From Optical Flow to Deep Learning

IMS R&D

Elyakom Vadislavsky

vadislavskye@ims.gov.il



What is Radar Nowcasting?

Nowcasting provides high-resolution forecasts for the very near future (e.g., 0-6 hours).

It is critical for tracking severe weather, like thunderstorms and flash floods, using radar data.

Outline

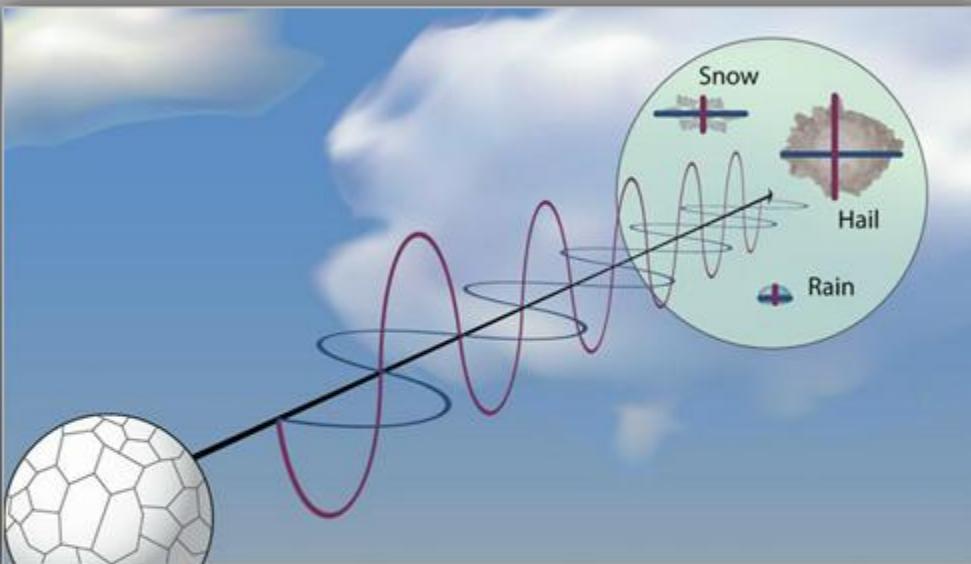
- Weather RADAR
- Trec & Optical Flow
- STEPS
- LINDA
- DGMR



photo: Eyal Amitai, IMS

Did You Know...

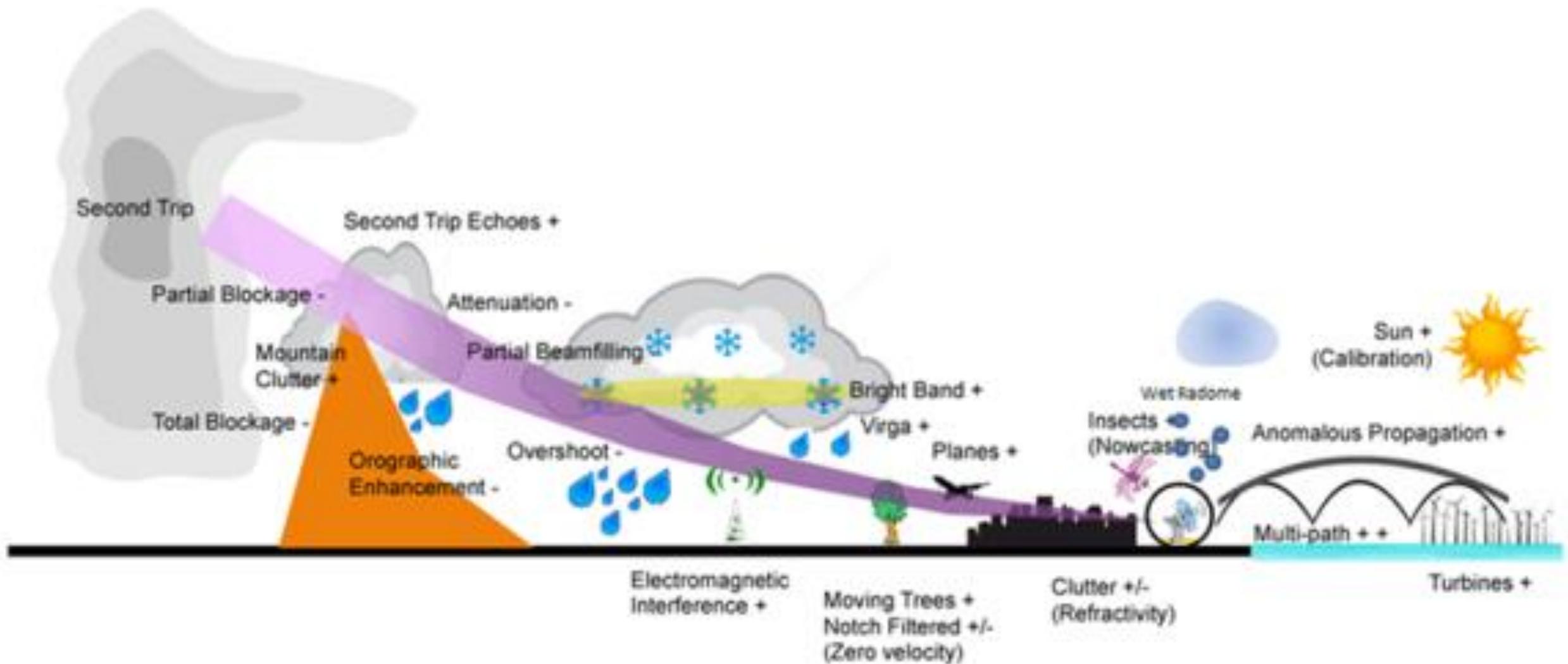
Radar is short for radio detection and ranging



Our Doppler radar emits extremely short bursts of radio waves into the atmosphere, then "listens" for a returning signal

If the energy strikes an object (rain drop, bug, bird, etc.), the energy scatters in all directions and a small fraction of that energy is directed back toward the radar

Precipitation areas and motions toward or away from the radar (Doppler effect) can then be detected



Radar Nowcasting Methods

Cross-Correlation (TREC) & Optical Flow

TREC Method

Tracking Radar Echoes by Correlation

The traditional standard for radar echo tracking.

Mechanism: Divides the radar image into small sub-grids or "boxes".

Searches for the most similar box in the subsequent radar scan (Time $T+1$).

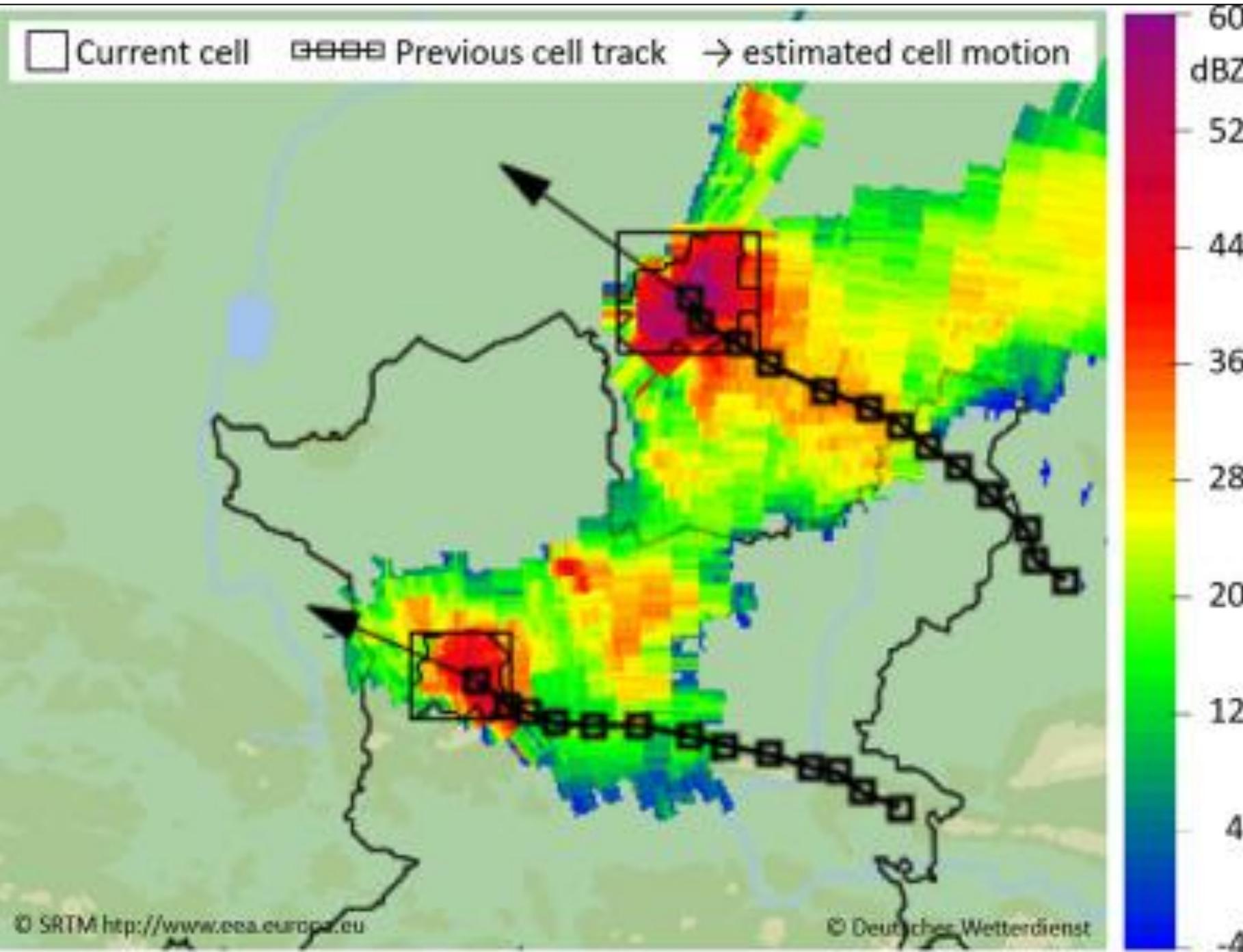
Calculates a motion vector based on the displacement of the best-matched box.

The Cross-Correlation Coefficient

TREC maximizes the correlation coefficient R between two arrays Z_1 (at t) and Z_2 (at $t+\Delta t$).

$$R = \frac{\sum (Z_1 - \bar{Z}_1) (Z_2 - \bar{Z}_2)}{\sqrt{\sum (Z_1 - \bar{Z}_1)^2 \sum (Z_2 - \bar{Z}_2)^2}}$$

Where Z represents radar reflectivity (dBZ) and \bar{Z} is the mean reflectivity within the search box.



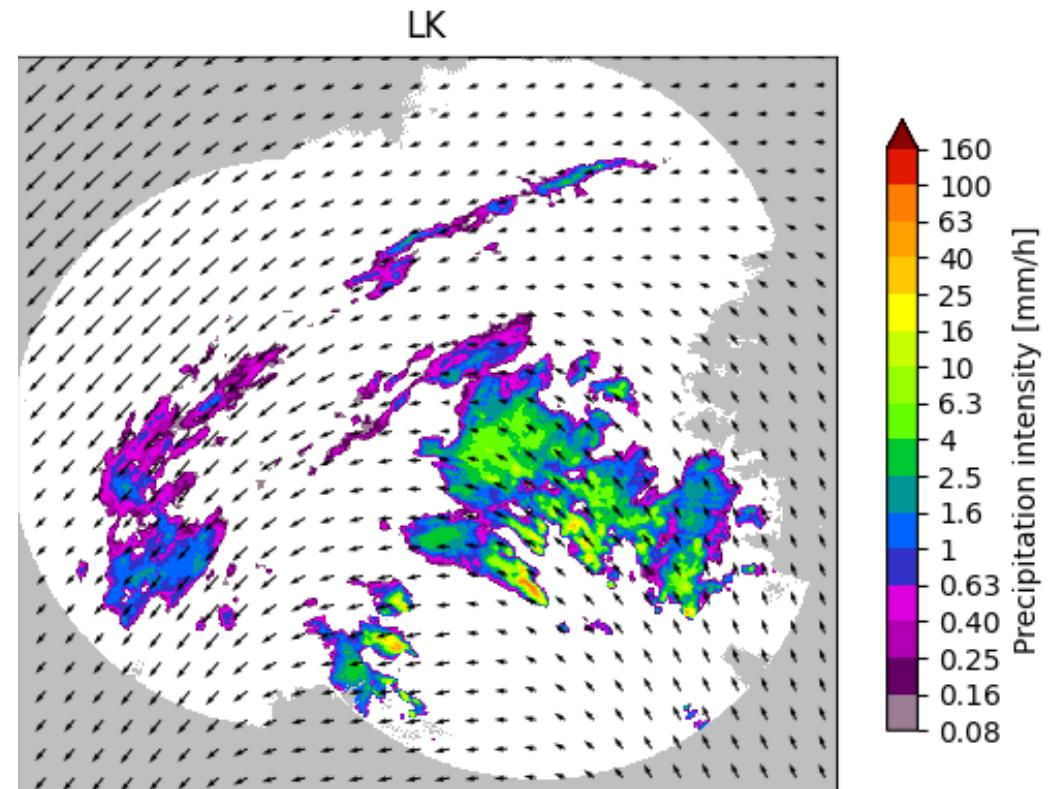
Optical Flow – Pixel level tracking

Originally from computer vision (Image processing).

Estimates the apparent motion of brightness patterns (reflectivity) at the pixel level.

Produces a dense vector field (a vector for every pixel).

Allows for capturing complex motions like rotation and deformation.



https://pysteps.readthedocs.io/en/latest/auto_examples/plot_optical_flow.html#sphx-glr-auto-examples-plot-optical-flow-py

Optical Flow Constraint Equation

Brightness constancy assumption - the intensity I of a pixel remains constant as it moves over a short time dt .

$$\frac{\partial I}{\partial t} + u \frac{\partial I}{\partial x} + v \frac{\partial I}{\partial y} = 0$$

$I(x, y, t)$: Radar Reflectivity.

u, v : Horizontal and vertical velocity components.

Lucas-Kanade assumes flow is constant in a small local neighborhood. Solves via least squares. Fast but struggles with large displacements.

Limitations of TREC & Optical Flow

Rigid motion assumption: the shape of the storm cell remains constant within the tracking interval.

Lagrangian persistence: the precipitation fields move with the flow without changing intensity.

TREC vs. Optical Flow

Cross-Correlation (TREC)

Resolution: Sparse / Block-based (e.g., 1 vector per few km).

Motion: Rigid translation of boxes.

Computation: Simple, robust to noise but coarse.

Best For: Tracking large, stable storm systems.

Optical Flow

Resolution: Dense (1 vector per pixel).

Motion: Captures rotation, divergence, and deformation.

Computation: More intensive, requires smoothing constraints.

Best For: Complex, rapidly evolving convective storms.

Future Directions

Optical flow is currently the industry standard for short-term (0-2 hour) advection.

Deep Learning (AI): New models (ConvLSTM, U-Net) are starting to outperform traditional optical flow.

AI can learn non-linear growth and decay, not just motion (advection).

Hybrid systems (Optical Flow+AI) are likely the future of nowcasting.

References

Rinehart, R. E., & Garvey, E. T. (1978). Three-dimensional storm motion detection by conventional weather radar. *Nature*, 273, 287–289.

Tuttle, J. D., & Foote, G. B. (1990). Determination of the boundary layer airflow from a single Doppler radar. *Journal of Atmospheric and Oceanic Technology*, 7(2), 218–232.

Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. *Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI)*, 674–679.

Bowler, N. E., Pierce, C. E., & Seed, A. (2004). Development of a precipitation nowcasting algorithm based upon optical flow techniques. *Journal of Hydrology*, 288(1-2), 74–91.

Radar Nowcasting Methods

STEPS

Short Term Ensemble Prediction System

A Probabilistic Approach to Precipitation Forecasting

What is STEPS?

Definition

STEPS (Short-Term Ensemble Prediction System) is a widely used nowcasting algorithm developed jointly by the UK Met Office and the Australian Bureau of Meteorology.

It bridges the gap between:

- **Radar Extrapolation:** Accurate for 0-60 mins.
- **Numerical Weather Prediction (NWP):** Accurate for >3-6 hours.

Goal: To generate an ensemble of rainfall cascades that represents the uncertainty in future evolution.

Limitations of Simple Extrapolation

Traditional nowcasting uses Lagrangian persistence, moving pixels based on optical flow.

Small Scales: Rain cells grow and decay rapidly (predictable only for mins).

Large Scales: Frontal systems persist longer (predictable for hours).

Simple extrapolation fails because it assumes "frozen" turbulence, ignoring the dynamic lifecycle of storm cells.

S-PROG (Spectral Prognosis) Model

Origin: Introduced by Seed (2003) as a dynamic scaling approach to advection forecasting.

Core Concept: Decomposes the precipitation field into a multiplicative cascade of spatial scales (levels).

Mechanism: Applies an Auto-Regressive (AR) process to each scale separately to model temporal evolution.

Function: Filters out unpredictable, small-scale features to manage forecast uncertainty deterministically.

Relation: Serves as the unperturbed baseline for the probabilistic STEPS model

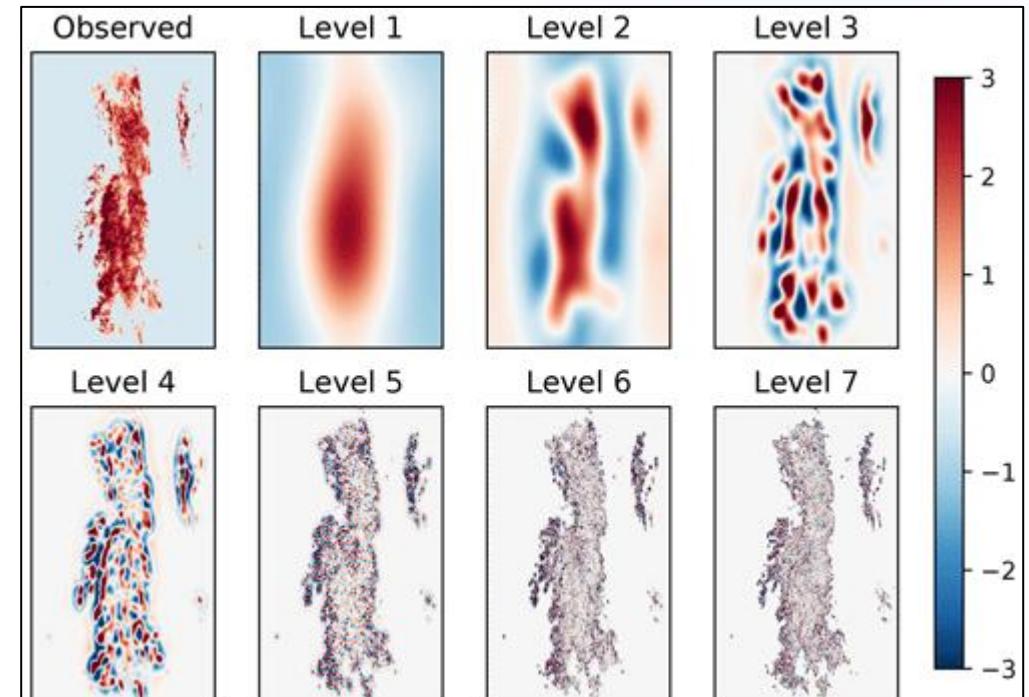
Scale Decomposition

Lifetime of precipitation relates to its spatial scale.

STEPS decompose the precipitation field into a multiplicative cascade (FFT).

Cascade levels represent different spatial scales.

Each level is treated independently in the forecast.



<https://gmd.copernicus.org/articles/12/4185/2019>

STEPS Methodology Flow

1. Input

Sequence of recent radar reflectivity fields (converted to dBR).

2. Optical Flow

Calculate advection field (motion vectors) using Lucas-Kanade method.

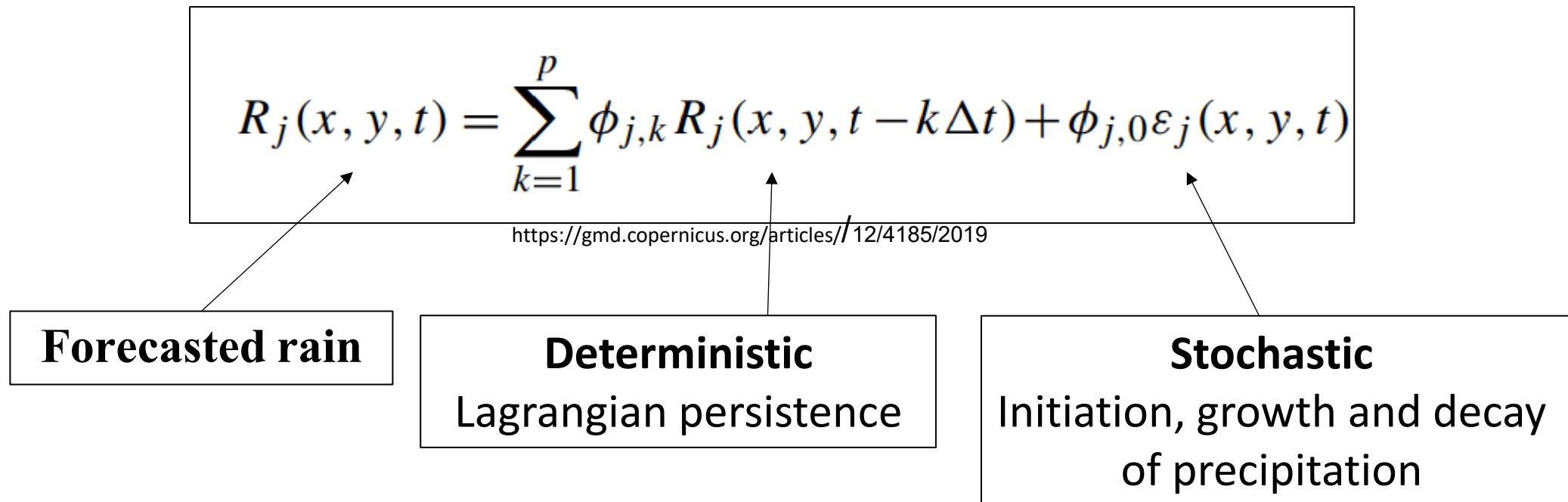
3. Evolution

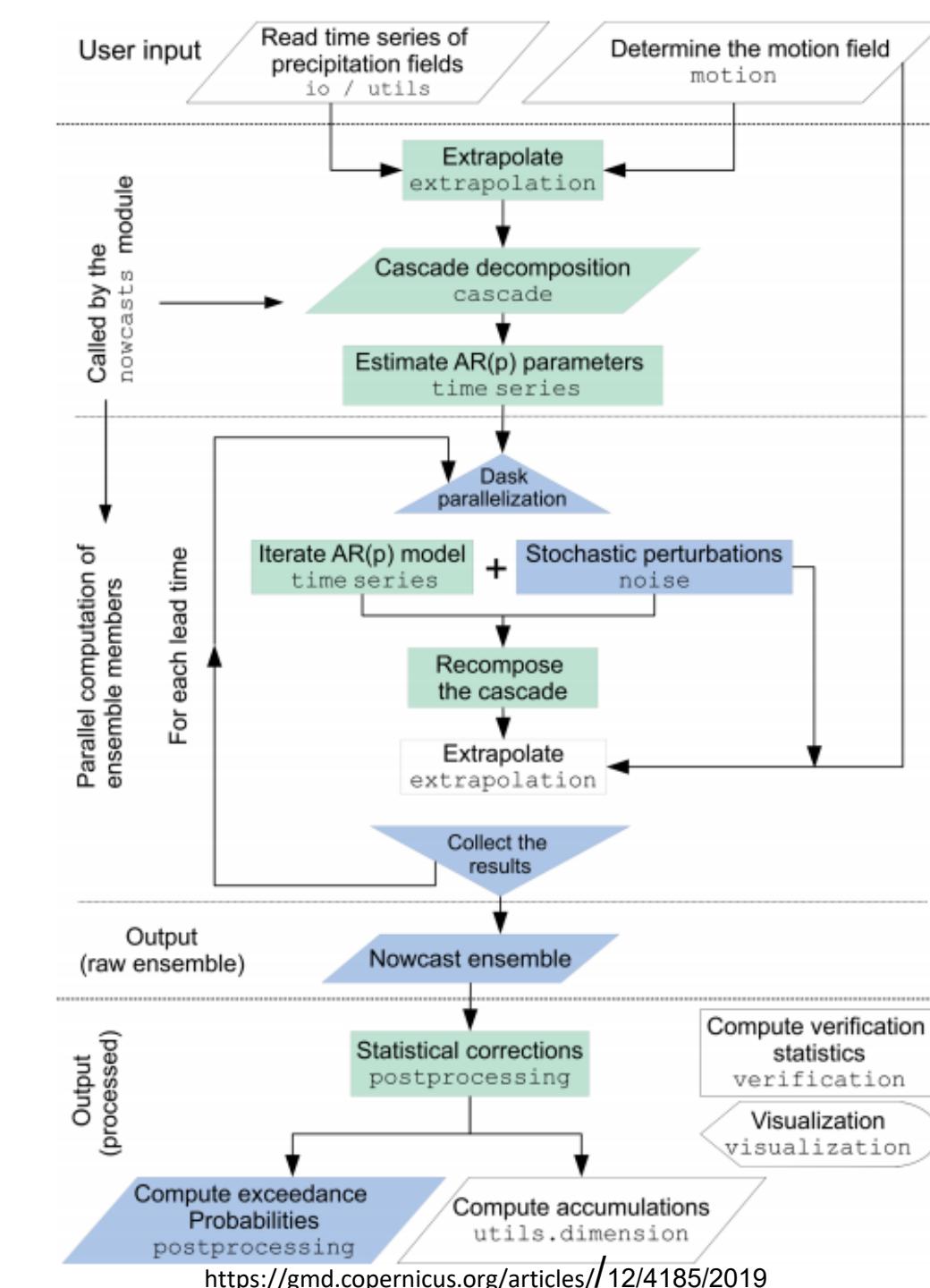
Decompose, advect, and evolve each scale with AR models + Noise.

The AR model

A typical approach to model temporal evolution of precipitation fields.

Auto-regressive (AR) process, combines the deterministic component from Lagrangian persistence with a stochastic innovation term (noise or perturbation term).





Stochastic Ensembles

Why Ensembles?

Because the small scales are unpredictable, STEPS generates multiple "realizations" by adding different random noise seeds.

This results in probabilistic outputs (e.g., "30% chance of >10mm rain") rather than a single deterministic guess.

References

Seed, A. W. (2003). A dynamic and spatial scaling approach to advection forecasting. *Journal of Applied Meteorology*.

Bowler, N. E., et al. (2006). STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. *Q. J. R. Meteorol. Soc.*

Pulkkinen, S., et al. (2019). Pysteps: an open-source Python library for probabilistic precipitation nowcasting. *Geoscientific Model Development*.

Germann, U., & Zawadzki, I. (2002). Scale-dependence of the predictability of precipitation from continental radar images. *Monthly Weather Review*.

Radar Nowcasting Methods

LINDA

**Lagrangian INtegro-Difference equation model
with Autoregression**

The Challenge: Convective Rainfall

Limitations of Standard Methods

Traditional nowcasting methods (like simple extrapolation or S-PROG) often fail to capture the rapid **growth and decay** of intense convective storms.

Extrapolation: Assumes "frozen" turbulence; rain cells don't change intensity

S-PROG: Filters small scales to remove unpredictable noise, but this results in "blurred" forecasts for intense local rain.

What is LINDA?

Definition

"Lagrangian INtegro-Difference equation model with Autoregression"

LINDA model is designed to detect convective rainfall.

Core Philosophy: It treats rainfall evolution as a combination of three distinct physical processes:

- 1. Advection:** The motion of the storm.
- 2. Growth/Decay:** The change in intensity over time.
- 3. Loss of Predictability:** The inevitable uncertainty at small scales.

The 5 Core Components

1. Feature Detection

Identifying rain cells ("blobs") to focus computation on relevant areas.

2. Advection

Lagrangian extrapolation using optical flow vectors.

3. ARI Process

Autoregressive Integrated model to simulate growth and decay.

4. Convolution

Integro-difference equations to model error distribution.

5. Stochastic Perturbations

Adding noise to generate probabilistic ensembles.

1. Feature Detection (Blobs)

Targeting Key Features

Unlike global methods that treat the whole domain equally, LINDA uses **feature detection** (e.g., Laplacian of Gaussian "Blob" detector):

- Allows the model to localize parameters to specific storm cells.
- focuses computational resources on high-intensity rainfall areas.
- Improves the estimation of growth and decay for individual cells

2. Advection: The Lagrangian Framework

The foundation of the model is the advection equation, solved in Lagrangian coordinates. This describes how the rain field moves with velocity.

$$\frac{d\psi}{dt} = \frac{\partial \psi}{\partial t} + \mathbf{v} \cdot \nabla \psi = S(t)$$

Key Insight: Standard extrapolation assumes $S(t) = 0$. LINDA explicitly models $S(t)$ (the source/sink term) to represent the storm's life cycle.

3. Growth & Decay: The ARI Process

To solve for $S(t)$, LINDA uses an Autoregressive Integrated (ARI) process along the Lagrangian trajectory.

This predicts the future intensity based on past states using:

- Autoregressive coefficients (determined empirically).
- Stochastic error term (innovation).

4. Predictability Loss & Convolution

Integro-Difference equation

As forecast lead time increases, small-scale details become unpredictable.

LINDA handles this by applying a **Convolution Kernel** (often anisotropic) to the error term.

This mathematically "smooths" the error distribution, ensuring that uncertain small-scale features don't dominate the forecast, effectively transitioning from a deterministic to a probabilistic view.

LINDA vs. STEPS

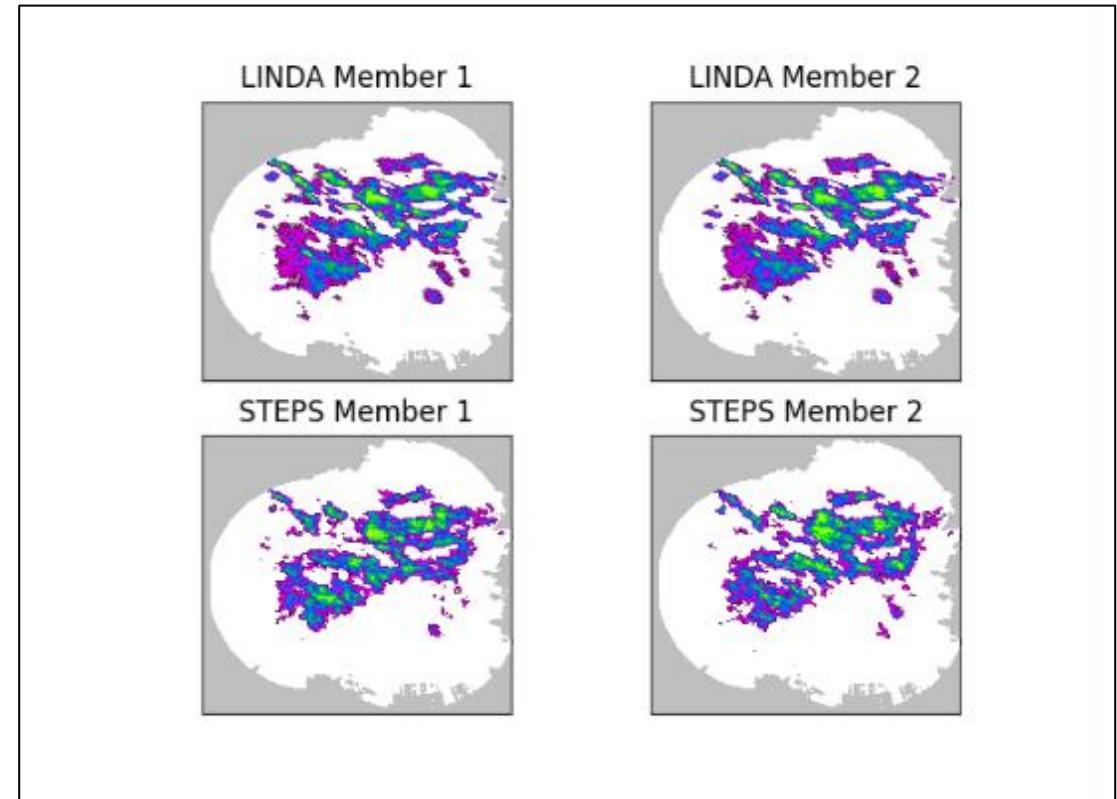
Superiority in Convection

STEPS/S-PROG: Uses spectral decomposition.

It tends to filter out high frequencies, leading to "blurred" forecasts for intense storms.

LINDA: Preserves local structure better due to the Lagrangian ARI process.

Result: LINDA produces sharper, more structurally accurate nowcasts for heavy, localized rainfall events.



https://pysteps.readthedocs.io/en/latest/auto_examples/linda_nowcasts.html

References

Pulkkinen, S., et al. (2021). "Lagrangian Integro-Difference Equation Model for Precipitation Nowcasting." *Journal of Atmospheric and Oceanic Technology*, 38(12).

Pulkkinen, S., et al. (2019). "Pysteps: an open-source Python library for probabilistic precipitation nowcasting." *Geoscientific Model Development*, 12.

Germann, U., & Zawadzki, I. (2002). "Scale-dependence of the predictability of precipitation from continental radar images." *Monthly Weather Review*, 130.

Seed, A. W. (2003). "A dynamic and spatial scaling approach to advection forecasting." *Journal of Applied Meteorology*.

Radar Nowcasting Methods

DGMR

Deep Generative Model of Rainfall

DeepMind & Met Office

Collaboration

The Challenge of Nowcasting

Goal: High-resolution precipitation forecasting up to 90 minutes ahead.

Traditional Methods: Rely on advection (optical flow). Good for movement, bad for intensity changes or new formation.

Deep Learning: Uses Mean Squared Error (MSE) loss. Result is often *blurry* predictions that fail to capture extreme events.

DGMR Overview

Probabilistic Generative Approach

DGMR moves beyond deterministic regression.

Generative: Produces multiple plausible future realizations (samples) rather than one blurry average.

Adversarial: Uses a GAN (Generative Adversarial Network) framework to ensure realism.

Core Idea: Balance the *sharpness* of GANs with the *consistency* of regularization

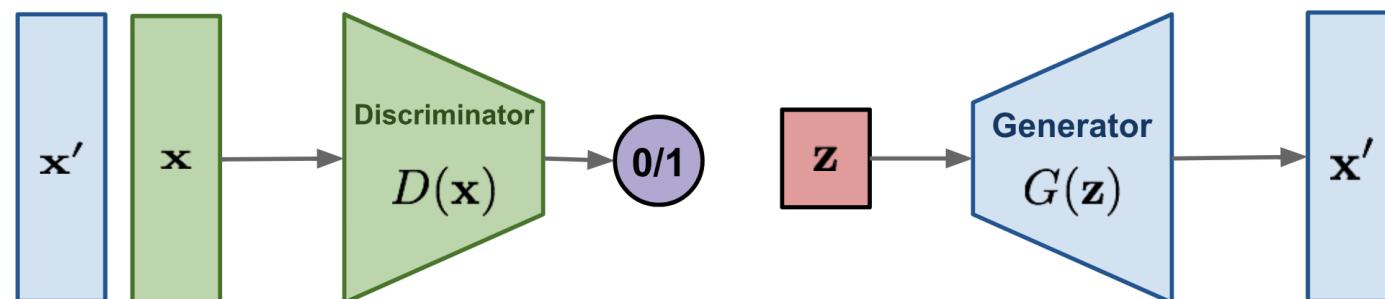
Generator Architecture

Conditioning Stack: Processes past 4 radar frames using residual D-Blocks.

Latent Stack: Injects Gaussian noise (Z) to allow for probabilistic diversity.

Sampler: A ConvGRU (Convolutional Gated Recurrent Unit) network that recurrently predicts 18 future frames (90 mins).

GAN: minimax the classification error loss.



Dual Discriminators

Spatial Discriminator

A Convolutional Neural Network (CNN) that ensures each individual frame looks like a realistic radar field. It focuses on spatial texture and intensity distributions.

Temporal Discriminator

A 3D-CNN that examines sequences of frames. It ensures the motion is fluid and temporally consistent, penalizing "jumpy" or unrealistic evolutions.

Equations I: Objective Function

The model uses a **Hinge Loss** formulation for the adversarial component. This is known to provide stable gradients for training.

Discriminator Loss (L_D)

$$L_D = E_{x \sim p_{\text{data}}} [\max (0, 1 - D(x))] + E_{z \sim p_z} [\max (0, 1 + D(G(z)))]$$

D: Discriminator

G: Generator

x: Real Data

z: Latent Noise

Equations II: Regularization

Grid Cell Regularization

To make predictions more realistic, a regularization term $\lambda * L_{\text{reg}}$ is added.

This term penalizes the difference between the generated samples and the ground truth, often heavily weighting high-intensity rainfall pixels to prevent "missing" extreme events.

Generator Loss (L_G)

$$L_G = - \mathbb{E}_{z \sim p_z} [D(G(z))] + \lambda L_{\text{reg}}$$

Performance Comparison

Superior Results

In a cognitive evaluation with over 50 expert meteorologists from the UK Met Office, DGMR was significantly preferred.

Accuracy: Better spatial extent of rain.

Utility: More useful for flood warnings.

No Blurring: Maintains crisp details.

Expert Preference (%)



Visual Results

Sharp vs. Blurry

The visual difference is striking. Deterministic models (like UNet) average out uncertainties, leading to a "foggy" look that underestimates peak rainfall intensity.

DGMR maintains the "sharpness" and texture of real radar data, preserving the small-scale convective features crucial for flash flood warnings.

References

Ravuri, S., Lenc, K., Willson, M. et al. **Skillful precipitation nowcasting using deep generative models of radar**. *Nature* 597, 672–677 (2021).

Pulkkinen, S. et al. **Pysteps: an open-source Python library for probabilistic precipitation nowcasting**. *Geosci. Model Dev.* 12, 4185–4219 (2019).

Goodfellow, I. et al. **Generative adversarial nets**. *Adv. Neural Inf. Process. Syst.* 27 (2014).

Shi, X. et al. **Convolutional LSTM network: A machine learning approach for precipitation nowcasting**. *Adv. Neural Inf. Process. Syst.* (2015).

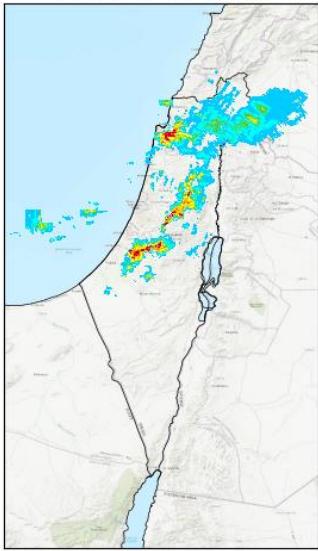
Available Radar Nowcasting Tools

Tool	Methodology	Key Features	Availability	Website	Reference
INCA	Sensor Fusion	Alpine terrain correction; integrates stations & sat.	Operational / Commercial	www.geosphere.at	Haiden et al. (2011)
pySTEPS	Optical Flow	Modular, probabilistic, extensive library.	Open Source (BSD-3)	pysteps.github.io	Pulkkinen et al. (2019)
DGMR	Deep Gen (GAN)	Generative models, sharp predictions.	Open Source (Apache)	github/deepmind	Ravuri et al. (2021)
TITAN	Centroid Tracking	Object-based storm cell tracking.	Open Source (BSD)	www.lrose.net	Dixon & Wiener (1993)
SWIRLS	Semi-Lagrangian	"Com-SWIRLS" version available.	Restricted / Community	swirls.hko.gov.hk	Li & Lai (2004)
MetNet-3	Neural Weather	24h horizon, 2min resolution.	Proprietary (API)	research.google	Sonderby et al. (2020)
Rainymotion	Dense Flow	Lightweight tracking & extrapolation.	Open Source (MIT)	github/hydrogo	Ayzel et al. (2019)

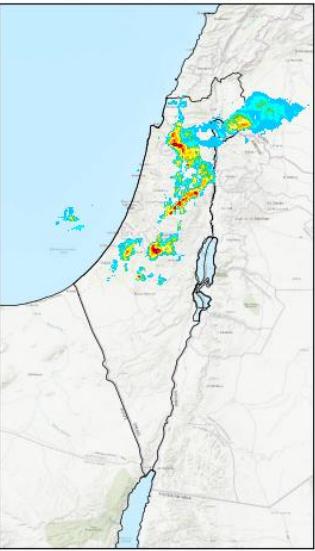
**Example of 4 methods:
24-25/11/2025 Severe weather event**

Rainfall Nowcast Comparison (FSS 2mm/20km)
Valid: 25/11/2025 04:30 UTC (+30 min)

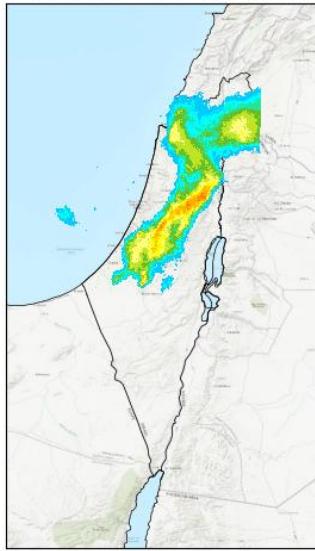
RADAR (Truth)



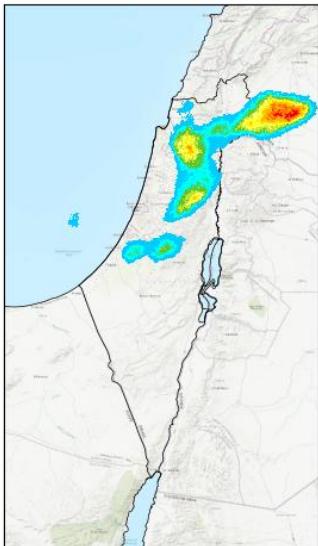
LK - FSS: 0.82



DGMR - FSS: 0.78



STEPS - FSS: 0.88

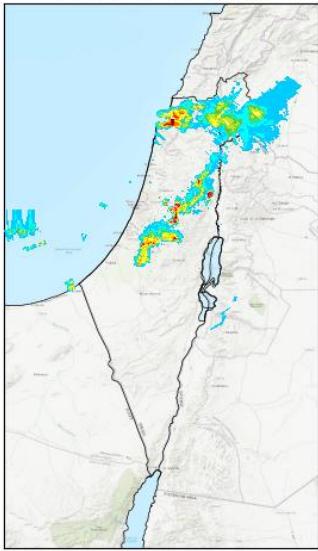


LINDA - FSS: 0.82

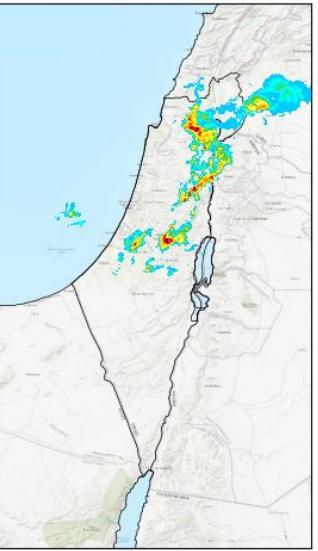


Rainfall Nowcast Comparison (FSS 2mm/20km)
Valid: 25/11/2025 05:00 UTC (+60 min)

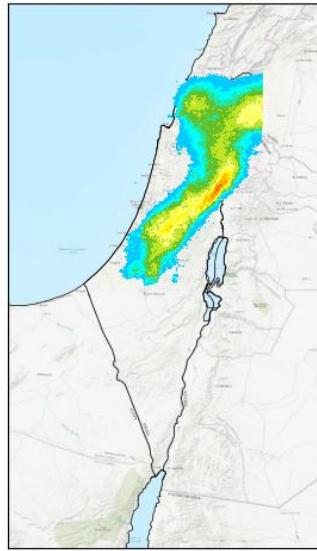
RADAR (Truth)



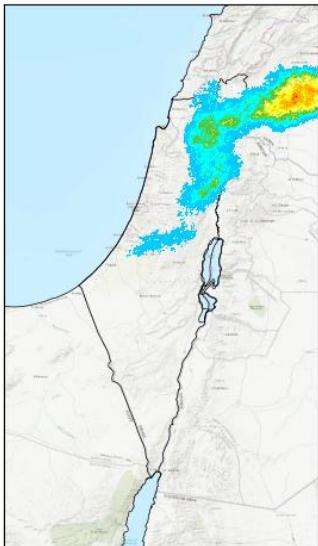
LK - FSS: 0.67



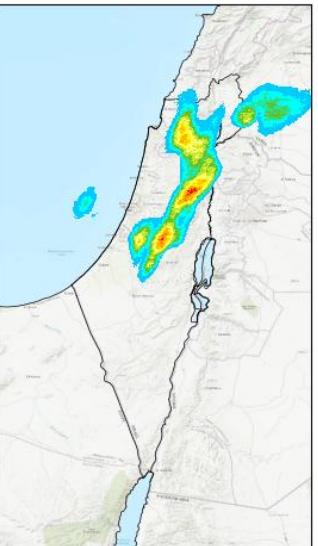
DGMR - FSS: 0.68



STEPS - FSS: 0.68



LINDA - FSS: 0.70

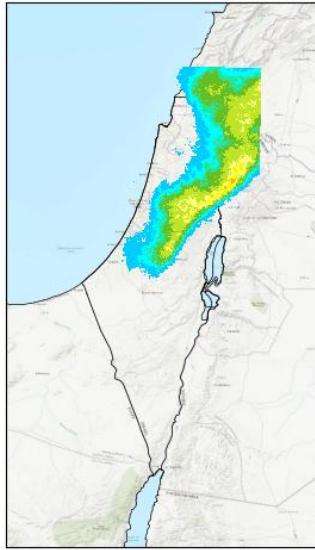


Rainfall Nowcast Comparison (FSS 2mm/20km)
Valid: 25/11/2025 05:30 UTC (+90 min)

RADAR (Truth)

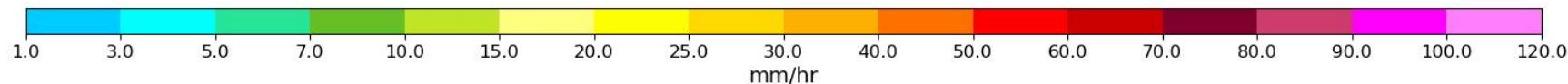
LK - FSS: 0.61

DGMR - FSS: 0.73



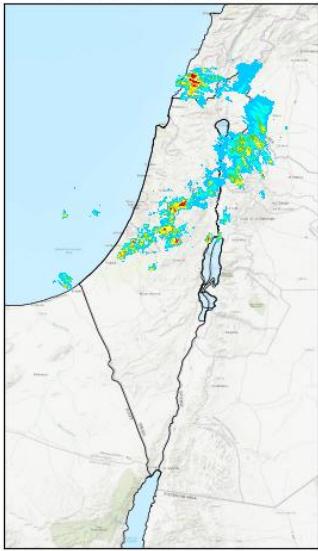
STEPS - FSS: 0.41

LINDA - FSS: 0.59

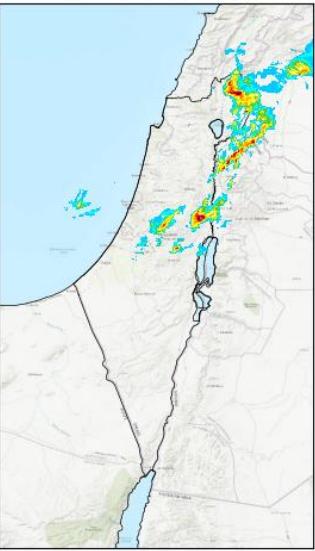


Rainfall Nowcast Comparison (FSS 2mm/20km)
Valid: 25/11/2025 06:00 UTC (+120 min)

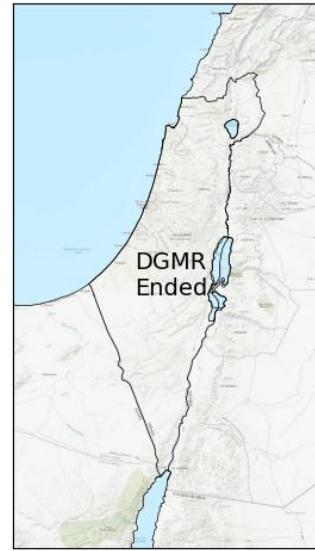
RADAR (Truth)



LK - FSS: 0.53



DGMR
Ended



STEPS - FSS: 0.14

LINDA - FSS: 0.55



Thank you for listening

