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Nowcasting provides high-resolution forecasts for the very near future (e.g., 0-6 hours).

It is critical for tracking severe weather, like thunderstorms and flash floods, using 

radar data.

What is Radar Nowcasting?
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https://www.weather.gov/images/grr/education/dyk/DYK-Monday-RadarFacts.png



https://wmo.int/guide-operational-weather-radar-best-practices-poster



Radar Nowcasting Methods

Cross-Correlation (TREC) & Optical Flow



TREC Method

Tracking Radar Echoes by Correlation

The traditional standard for radar echo tracking.

Mechanism: Divides the radar image into small sub-grids or "boxes".

Searches for the most similar box in the subsequent radar scan (Time T+1).

Calculates a motion vector based on the displacement of the best-matched box.



The Cross-Correlation Coefficient

TREC maximizes the correlation coefficient R between two arrays Z1 (at   t) and Z2

(at t+Δt ).

Where  Z represents radar reflectivity (dBZ) and  Z ¯  is the mean reflectivity within 

the search box.



https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/doppler-radar



Optical Flow – Pixel level tracking

Originally from computer vision (Image 

processing).

Estimates the apparent motion of brightness 

patterns (reflectivity) at the pixel level.

Produces a dense vector field (a vector for 

every pixel).

Allows for capturing complex motions like 

rotation and deformation.

https://pysteps.readthedocs.io/en/latest/auto_examples/plot_optical_flow.html#sphx-glr-auto-
examples-plot-optical-flow-py



Optical Flow Constraint Equation

Brightness constancy assumption - the intensity I of a pixel remains constant as it moves 

over a short time  dt.

I  (  x  ,  y  ,  t  )  : Radar Reflectivity.

u  ,  v  : Horizontal and vertical velocity components.

Lucas-Kanade assumes flow is constant in a small local neighborhood. Solves via least 

squares. Fast but struggles with large displacements.



Limitations of TREC & Optical Flow 

Rigid motion assumption: the shape of the storm cell remains constant within the 

tracking interval.

Lagrangian persistence: the precipitation fields move with the flow without 

changing intensity.



TREC vs. Optical Flow

Cross-Correlation (TREC) Optical Flow

Resolution: Sparse / Block-based (e.g., 

1 vector per few km).

Motion: Rigid translation of boxes.

Computation: Simple, robust to noise 

but coarse.

Best For: Tracking large, stable storm 

systems.

Resolution: Dense (1 vector per 

pixel).

Motion: Captures rotation, 

divergence, and deformation.

Computation: More intensive, 

requires smoothing constraints.

Best For: Complex, rapidly evolving 

convective storms.



Future Directions

Optical flow is currently the industry standard for short-term (0-2 hour) advection.

Deep Learning (AI): New models (ConvLSTM, U-Net) are starting to outperform 

traditional optical flow.

AI can learn non-linear growth and decay, not just motion (advection).

Hybrid systems (Optical Flow+AI) are likely the future of nowcasting.



Rinehart, R. E., & Garvey, E. T. (1978). Three-dimensional storm motion detection by conventional weather radar. Nature, 273, 287–

289.

Tuttle, J. D., & Foote, G. B. (1990). Determination of the boundary layer airflow from a single Doppler radar. Journal of Atmospheric 

and Oceanic Technology, 7(2), 218–232.

Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. Proceedings of the 7th 

International Joint Conference on Artificial Intelligence (IJCAI), 674–679.

Bowler, N. E., Pierce, C. E., & Seed, A. (2004). Development of a precipitation nowcasting algorithm based upon optical flow 

techniques. Journal of Hydrology, 288(1-2), 74–91.

References



Radar Nowcasting Methods

STEPS

Short Term Ensemble Prediction System 

A Probabilistic Approach to Precipitation Forecasting



Definition

STEPS (Short-Term Ensemble Prediction 

System) is a widely used nowcasting algorithm 

developed jointly by the UK Met Office and the 

Australian Bureau of Meteorology. Goal: To generate an ensemble of 

rainfall cascades that represents the 

uncertainty in future evolution.

It bridges the gap between:

• Radar Extrapolation: Accurate for 0-60 

mins.

• Numerical Weather Prediction (NWP):

Accurate for >3-6 hours.

What is STEPS?



Traditional nowcasting uses Lagrangian persistence, moving pixels based on optical flow.

Small Scales: Rain cells grow and decay rapidly (predictable only for mins).

Large Scales: Frontal systems persist longer (predictable for hours).

Simple extrapolation fails because it assumes "frozen" turbulence, ignoring the dynamic 

lifecycle of storm cells.

Limitations of Simple Extrapolation



S-PROG (Spectral Prognosis) Model

Origin: Introduced by Seed (2003) as a dynamic scaling approach to advection forecasting.

Core Concept: Decomposes the precipitation field into a multiplicative cascade of spatial scales 

(levels).

Mechanism: Applies an Auto-Regressive (AR) process to each scale separately to model 

temporal evolution.

Function: Filters out unpredictable, small-scale features to manage forecast uncertainty 

deterministically.

Relation: Serves as the unperturbed baseline for the probabilistic STEPS model



Lifetime of precipitation relates to its spatial 

scale.

STEPS decompose the precipitation field into a 

multiplicative cascade (FFT).

Cascade levels represent different spatial scales.

Each level is treated independently in the 

forecast.

Scale Decomposition

https://gmd.copernicus.org/articles/ 12/4185/2019/



1. Input

Sequence of recent 

radar reflectivity fields 

(converted to dBR).

2. Optical Flow

Calculate advection 

field (motion vectors) 

using Lucas-Kanade

method.

3. Evolution

Decompose, advect, 

and evolve each scale 

with AR models + 

Noise.

STEPS Methodology Flow



Forecasted rain Deterministic  
Lagrangian persistence

The AR model

A typical approach to model temporal evolution of precipitation fields.

Auto-regressive (AR) process, combines the deterministic component from Lagrangian 

persistence with a stochastic innovation term (noise or perturbation term).

Stochastic 
Initiation, growth and decay 

of precipitation

https://gmd.copernicus.org/articles/ 12/4185/2019/



https://gmd.copernicus.org/articles/ 12/4185/2019/



Why Ensembles?

Because the small scales are unpredictable, STEPS generates multiple "realizations" by 

adding different random noise seeds.

This results in probabilistic outputs (e.g., "30% chance of >10mm rain") rather than a single 

deterministic guess.

Stochastic Ensembles
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Radar Nowcasting Methods

LINDA

Lagrangian INtegro-Difference equation model 

with Autoregression 



Limitations of Standard Methods

Traditional nowcasting methods (like simple extrapolation or S-PROG) often fail to 

capture the rapid growth and decay of intense convective storms.

Extrapolation: Assumes "frozen" turbulence; rain cells don't change intensity

S-PROG: Filters small scales to remove unpredictable noise, but this results in 

"blurred" forecasts for intense local rain.

The Challenge: Convective Rainfall



Definition

"Lagrangian INtegro-Difference equation model with Autoregression"

LINDA model is designed to detect convective rainfall.

Core Philosophy: It treats rainfall evolution as a combination of three distinct physical 

processes:

1. Advection: The motion of the storm.

2. Growth/Decay: The change in intensity over time.

3. Loss of Predictability: The inevitable uncertainty at small scales.

What is LINDA?



5. Stochastic Perturbations

Adding noise to generate probabilistic ensembles.

1. Feature 

Detection

Identifying rain 

cells ("blobs") to 

focus computation 

on relevant areas.

2. Advection

Lagrangian 

extrapolation using 

optical flow vectors.

3. ARI Process

Autoregressive 

Integrated model to 

simulate growth and 

decay.

4. Convolution

Integro-difference 

equations to model 

error distribution.

The 5 Core Components



Targeting Key Features

Unlike global methods that treat the whole domain equally, LINDA uses feature 

detection (e.g., Laplacian of Gaussian "Blob" detector):

• Allows the model to localize parameters to specific storm cells.

• focuses computational resources on high-intensity rainfall areas.

• Improves the estimation of growth and decay for individual cells

1. Feature Detection (Blobs)



The foundation of the model is the advection equation, solved in Lagrangian coordinates. 

This describes how the rain field moves with velocity.

Key Insight: Standard extrapolation assumes eq = 0. LINDA explicitly models S(t) (the 

source/sink term) to represent the storm's life cycle.

2. Advection: The Lagrangian Framework



To solve for S(t), LINDA uses an Autoregressive Integrated (ARI) process along the 

Lagrangian trajectory. 

This predicts the future intensity based on past states using:

• Autoregressive coefficients (determined empirically).

• Stochastic error term (innovation).

3. Growth & Decay: The ARI Process



Integro-Difference equation

As forecast lead time increases, small-scale details become unpredictable.

LINDA handles this by applying a Convolution Kernel (often anisotropic) to the error term.

This mathematically "smooths" the error distribution, ensuring that uncertain small-scale 

features don't dominate the forecast, effectively transitioning from a deterministic to a 

probabilistic view.

4. Predictability Loss & Convolution



Superiority in Convection

STEPS/S-PROG: Uses spectral decomposition. 

It tends to filter out high frequencies, leading to 

"blurred" forecasts for intense storms.

LINDA: Preserves local structure better due to 

the Lagrangian ARI process.

Result: LINDA produces sharper, more 

structurally accurate nowcasts for heavy, 

localized rainfall events.

LINDA vs. STEPS

https://pysteps.readthedocs.io/en/latest/auto_examples/linda_nowcasts.html
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DGMR

Deep Generative Model of Rainfall

DeepMind & Met Office 

Collaboration

Radar Nowcasting Methods



Goal: High-resolution precipitation forecasting up to 90 minutes ahead.

Traditional Methods: Rely on advection (optical flow). Good for movement, bad 

for intensity changes or new formation.

Deep Learning: Uses Mean Squared Error (MSE) loss. Result is often blurry

predictions that fail to capture extreme events.

The Challenge of Nowcasting



Probabilistic Generative Approach

DGMR moves beyond deterministic regression.

Generative: Produces multiple plausible future realizations (samples) rather than one blurry 

average.

Adversarial: Uses a GAN (Generative Adversarial Network) framework to ensure realism.

Core Idea: Balance the sharpness of GANs with the consistency of regularization

DGMR Overview



Generator Architecture

Conditioning Stack: Processes past 4 radar frames using residual D-Blocks.

Latent Stack: Injects Gaussian noise (Z) to allow for probabilistic diversity.

Sampler: A ConvGRU (Convolutional Gated Recurrent Unit) network that 

recurrently predicts 18 future frames (90 mins).

https://lilianweng.github.io/posts/ 2018-10-13-wofl-sledom/



Spatial Discriminator

A Convolutional Neural Network (CNN) that 

ensures each individual frame looks like a realistic 

radar field. It focuses on spatial texture and 

intensity distributions.

Temporal Discriminator

A 3D-CNN that examines sequences of frames. 

It ensures the motion is fluid and temporally 

consistent, penalizing "jumpy" or unrealistic 

evolutions.

Dual Discriminators



The model uses a Hinge Loss formulation for the adversarial component. This is 

known to provide stable gradients for training.

D: Discriminator

G: Generator

x: Real Data

z: Latent Noise

Discriminator Loss (LD)

Equations I: Objective Function



Generator Loss (LG)

Grid Cell Regularization

To make predictions more realistic, a 

regularization term lambda*Lreg is added.

This term penalizes the difference between the 

generated samples and the ground truth, often 

heavily weighting high-intensity rainfall pixels 

to prevent "missing" extreme events.

Equations II: Regularization



Superior Results

In a cognitive evaluation with over 50 expert meteorologists from the UK Met 

Office, DGMR was significantly preferred.

Accuracy: Better spatial extent of rain.

Utility: More useful for flood warnings.

No Blurring: Maintains crisp details.

Performance Comparison



Sharp vs. Blurry

The visual difference is striking. Deterministic models (like UNet) average out uncertainties, 

leading to a "foggy" look that underestimates peak rainfall intensity.

DGMR maintains the "sharpness" and texture of real radar data, preserving the small-scale 

convective features crucial for flash flood warnings.

Visual Results
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Available Radar Nowcasting Tools

Tool Methodology Key Features Availability Website Reference

INCA Sensor Fusion
Alpine terrain correction; 
integrates stations & sat.

Operational / 
Commercial

www.geosphere.at Haiden et al. (2011)

pySTEPS Optical Flow
Modular, probabilistic, extensive 
library.

Open Source (BSD-
3)

pysteps.github.io Pulkkinen et al. (2019)

DGMR Deep Gen (GAN)
Generative models, sharp 
predictions.

Open Source 
(Apache)

github/deepmind Ravuri et al. (2021)

TITAN Centroid Tracking
Object-based storm cell 
tracking.

Open Source (BSD) www.lrose.net Dixon & Wiener (1993)

SWIRLS Semi-Lagrangian
"Com-SWIRLS" version 
available.

Restricted / 
Community

swirls.hko.gov.hk Li & Lai (2004)

MetNet-3 Neural Weather 24h horizon, 2min resolution. Proprietary (API) research.google Sonderby et al. (2020)

Rainymotion Dense Flow
Lightweight tracking & 
extrapolation.

Open Source (MIT) github/hydrogo Ayzel et al. (2019)



Example of 4 methods:
24-25/11/2025 Severe weather event











Thank you for listening
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