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Radar Nowcasting Methods

From Optical Flow to Deep Learning
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What is Radar Nowcasting?

Nowcasting provides high-resolution forecasts for the very near future (e.g., 0-6 hours).

It 1s critical for tracking severe weather, like thunderstorms and flash floods, using

radar data.
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Did You Know...

Our Doppler radar emits extremely short bursts of radio waves §
into the atmosphere, then “listens” for a returning signal

If the energy strikes an object (rain drop, bug, bird, etc.), the
energy scatters in all directions and a small fraction of that
energy is directed back toward the radar

Precipitation areas and motions toward or away from the radar
(Doppler effect) can then be detected

https://www.weather.gov/images/grr/education/dyk/DYK-Monday-RadarFacts.png National Weather Service — Grand RapidS, MI
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https://wmo.int/guide-operational-weather-radar-best-practices-poster




Radar Nowcasting Methods

Cross-Correlation (TREC) & Optical Flow



TREC Method

Tracking Radar Echoes by Correlation

The traditional standard for radar echo tracking.
Mechanism: Divides the radar image into small sub-grids or ”boxes”.
Searches for the most similar box 1n the subsequent radar scan (Time T+1).

Calculates a motion vector based on the displacement of the best-matched box.



The Cross-Correlation Coefficient

TREC maximizes the correlation coefficient R between two arrays Z, (at t) and Z,

(at t+At).

= Y (Z2,-2,)(Z,-7,)
V7oA T (2 k)

Where Z represents radar reflectivity (ABZ) and Z  is the mean reflectivity within

the search box.



= 60
Current cell G888 Previous cell track - estimated cell motion I dB7
)

OQTMMp:/I\:‘w_ ra curopaeu 2 Deut)chag Wetterdienst

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/doppler-radar




Optical Flow — Pixel level tracking

Originally from computer vision (Image

processing).

Estimates the apparent motion of brightness

patterns (reflectivity) at the pixel level.

Produces a dense vector field (a vector for

every pixel).

Allows for capturing complex motions like

rotation and deformation.
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https://pysteps.readthedocs.io/en/latest/auto_examples/plot_optical_flow.html#sphx-glr-auto-
examples-plot-optical-flow-py



Optical Flow Constraint Equation

Brightness constancy assumption - the intensity I of a pixel remains constant as 1t moves

over a short time dt.

I (x,y,t):RadarReflectivity.

u , v : Horizontal and vertical velocity components.

Lucas-Kanade assumes flow 1s constant in a small local neighborhood. Solves via least

squares. Fast but struggles with large displacements.



Limitations of TREC & Optical Flow

Rigid motion assumption: the shape of the storm cell remains constant within the

tracking interval.

Lagrangian persistence: the precipitation fields move with the flow without

changing intensity.



TREC vs. Optical Flow

Cross-Correlation (TREC)

Resolution: Sparse / Block-based (e.g.,
1 vector per few km).

Motion: Rigid translation of boxes.
Computation: Simple, robust to noise
but coarse.

Best For: Tracking large, stable storm

systems.

Optical Flow

Resolution: Dense (1 vector per
pixel).

Motion: Captures rotation,
divergence, and deformation.
Computation: More intensive,
requires smoothing constraints.

Best For: Complex, rapidly evolving

convective storms.



Future Directions

Optical flow 1s currently the industry standard for short-term (0-2 hour) advection.

Deep Learning (Al): New models (ConvLSTM, U-Net) are starting to outperform

traditional optical flow.
Al can learn non-linear growth and decay, not just motion (advection).

Hybrid systems (Optical Flow+Al) are likely the future of nowcasting.
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Radar Nowcasting Methods

STEPS
Short Term Ensemble Prediction System

A Probabilistic Approach to Precipitation Forecasting



What is STEPS?

Definition

STEPS (Short-Term Ensemble Prediction
System) 1s a widely used nowcasting algorithm
developed jointly by the UK Met Office and the

Australian Bureau of Meteorology. Goal: To generate an ensemble of

It bridges the gap between: rainfall cascades that represents the
 Radar Extrapolation: Accurate for 0-60 uncertainty in future evolution.
mins.

* Numerical Weather Prediction (NWP):

Accurate for >3-6 hours.



Limitations of Simple Extrapolation

Traditional nowcasting uses Lagrangian persistence, moving pixels based on optical flow.
Small Scales: Rain cells grow and decay rapidly (predictable only for mins).
Large Scales: Frontal systems persist longer (predictable for hours).

Simple extrapolation fails because it assumes ”frozen” turbulence, ignoring the dynamic

lifecycle of storm cells.



S-PROG (Spectral Prognosis) Model

Origin: Introduced by Seed (2003) as a dynamic scaling approach to advection forecasting.

Core Concept: Decomposes the precipitation field into a multiplicative cascade of spatial scales

(levels).

Mechanism: Applies an Auto-Regressive (AR) process to each scale separately to model

temporal evolution.

Function: Filters out unpredictable, small-scale features to manage forecast uncertainty

deterministically.

Relation: Serves as the unperturbed baseline for the probabilistic STEPS model



Scale Decomposition

Lifetime of precipitation relates to its spatial

Observed Level 1 Level 2 Level 3

scale.

STEPS decompose the precipitation field into a

multiplicative cascade (FFT). -
Level 5 Level 6
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https://gmd.copernicus.org/articles//1 2/4185/2019

forecast.



O
1, Input

Sequence of recent
radar reflectivity fields

(converted to dBR).

—
2"

2. Optical Flow
Calculate advection
field (motion vectors)

using Lucas-Kanade

method.

STEPS Methodology Flow

<

vl

3. Evolution

Decompose, advect,
and evolve each scale

with AR models +

Noise.



The AR model

A typical approach to model temporal evolution of precipitation fields.

Auto-regressive (AR) process, combines the deterministic component from Lagrangian

persistence with a stochastic innovation term (noise or perturbation term).

P
Rj(x,y, 1) = > ¢jxRj(x,y,t —kAD)+joej(x,y,1)
/ k=1

https://gmd.copernicus.org/lbrticles//’1 2/4185/2019 \

Forecasted rain Deterministic Stochastic
Lagrangian persistence Initiation, growth and decay
of precipitation
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Stochastic Ensembles

Why Ensembles?

Because the small scales are unpredictable, STEPS generates multiple 7realizations’” by

adding different random noise seeds.

This results in probabilistic outputs (e.g., 730% chance of >10mm rain”) rather than a single

deterministic guess.
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Radar Nowcasting Methods

LINDA

Lagrangian INtegro-Difference equation model

with Autoregression



The Challenge: Convective Rainfall

Limitations of Standard Methods

Traditional nowcasting methods (like simple extrapolation or S-PROG) often fail to
capture the rapid growth and decay of intense convective storms.

Extrapolation: Assumes "frozen" turbulence; rain cells don't change intensity

S-PROG: Filters small scales to remove unpredictable noise, but this results in

"blurred" forecasts for intense local rain.



Whatis LINDA?

Definition

»Lagrangian INtegro-Diflerence equation model with Autoregression”

LINDA model 1s designed to detect convective rainfall.

Core Philosophy: It treats rainfall evolution as a combination of three distinct physical

processes:
1. Advection: The motion of the storm.
2. Growth/Decay: The change in intensity over time.

3. Loss of Predictability: The inevitable uncertainty at small scales.



1, Feature
Detection
[dentifying rain
cells (blobs”) to
focus computation

on relevant areas.

The 5 Core Components

2. Advection

Lagrangian
extrapolation using

optical flow vectors.

3. ARI Process

Autoregressive
Integrated model to
simulate growth and

decay.

5. Stochastic Perturbations

Adding noise to generate probabilistic ensembles.

4. Convolution

Integro-difference
equations to model

error distribution.



1. Feature Detection (Blobs)

Targeting Key Features

Unlike global methods that treat the whole domain equally, LINDA uses feature

detection (e.g., Laplacian of Gaussian ”Blob” detector):
* Allows the model to localize parameters to specific storm cells.
* focuses computational resources on high-intensity rainfall areas.

* Improves the estimation of growth and decay for individual cells



2. Advection: The Lagrangian Framework

The foundation of the model 1s the advection equation, solved in Lagrangian coordinates.

This describes how the rain field moves with velocity.

dy _ dy
dt 0t

+v:- V=S (t)

Key Insight: Standard extrapolation assumes eq = 0. LINDA explicitly models S(t) (the

source/sink term) to represent the storm’s life cycle.



3. Growth & Decay: The ARI Process

To solve for S(t), LINDA uses an Autoregressive Integrated (ARI) process along the

Lagrangian trajectory.
This predicts the future intensity based on past states using:
* Autoregressive coefficients (determined empirically).

e Stochastic error term (innovation).



4. Predictability Loss & Convolution

Integro-Difference equation
As forecast lead time increases, small-scale details become unpredictable.
LINDA handles this by applying a Convolution Kernel (often anisotropic) to the error term.

This mathematically ”smooths” the error distribution, ensuring that uncertain small-scale
features don’t dominate the forecast, effectively transitioning from a deterministic to a

probabilistic view.



LINDA vs. STEPS

Superiority in Convection

STEPS/S-PROG: Uses spectral decomposition.

[t tends to filter out high frequencies, leading to LINDA Member 1 LINDA Member 2

nblurred” forecasts for intense storms.

LINDA: Preserves local structure better due to

the Lagrangian ARI process.

Result: LINDA produces sharper, more

structurally accurate nowcasts for heavy,

10 C all 7Ze d ralnf all event S. https: //pysteps.readthedocs.iosen/latest/auto_examples/linda_nowcasts.html
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Radar Nowcasting Methods

DGMR
Deep Generative Model of Rainfall

DeepMind & Met Office

Collaboration



The Challenge of Nowcasting

Goal: High-resolution precipitation forecasting up to 90 minutes ahead.

Traditional Methods: Rely on advection (optical flow). Good for movement, bad

for intensity changes or new formation.

Deep Learning: Uses Mean Squared Error (MSE) loss. Result is often blurry

predictions that fail to capture extreme events.



DGMR Overview

Probabilistic Generative Approach
DGMR moves beyond deterministic regression.

Generative: Produces multiple plausible future realizations (samples) rather than one blurry

average.
Adversarial: Uses a GAN (Generative Adversarial Network) framework to ensure realism.

Core Idea: Balance the sharpness of GANs with the consistency of regularization



Generator Architecture

Conditioning Stack: Processes past 4 radar frames using residual D-Blocks.
Latent Stack: Injects Gaussian noise (Z) to allow for probabilistic diversity.

Sampler: A ConvGRU (Convolutional Gated Recurrent Unit) network that

recurrently predicts 18 future frames (90 mins).

Discriminator

D(x)

Generator

G(z)

GAN: minimax the E
classification error loss.

https://lilianweng.github.io/posts//sledom-wofl-2018-10-13



Dual Discriminators

Lo O
L Jd

Spatial Discriminator Temporal Discriminator
A Convolutional Neural Network (CNN) that A 3D-CNN that examines sequences of frames.
ensures each individual frame looks like a realistic It ensures the motion 1s fluid and temporally
radar field. It focuses on spatial texture and consistent, penalizing #jumpy” or unrealistic

intensity distributions. evolutions.




Equations I: Objective Function

The model uses a Hinge Loss formulation for the adversarial component. This 1s

known to provide stable gradients for training.

Discriminator Loss (L)

Lp =E [ max (0,1-D(x) ) ] +E,

£ pdata

~p, [ max (0,1+D(G(z)))]

D: Discriminator
G: Generator
x: Real Data

z: Latent Noise



Equations 11: Regularization

Grid Cell Regularization

To make predictions more realistic, a
regularization term lambda*L, 1s added.

This term penalizes the difference between the
generated samples and the ground truth, often
heavily weighting high-intensity rainfall pixels

to prevent ”missing” extreme events.

Generator Loss (L)

E"“l}z

[D(G(z) ) ] + AL



Performance Comparison

Superior Results

In a cognitive evaluation with over 50 expert meteorologists from the UK Met

Office, DGMR was significantly preferred.

Expert Preference (%)

Accuracy: Better spatial extent of rain. DGMR

Utility: More useful for flood warnings. CE 2%

UNet
No Blurring: Maintains crisp details.



Visual Results

Sharp vs. Blurry

The visual difference 1s striking. Deterministic models (like UNet) average out uncertainties,

leading to a #foggy” look that underestimates peak rainfall intensity.

DGMR maintains the ”sharpness” and texture of real radar data, preserving the small-scale

convective features crucial for flash flood warnings.
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Available Radar Nowcasting Tools

Tool Methodology Key Features Availability Website Reference

INCA Sensor Fusion Alplne terrain Forrectlon; Operat|on.al / www.geosphere.at Haiden et al. (2011)
integrates stations & sat. Commercial

pySTEPS Optical Flow Modular, probabilistic, extensive | Open Source (BSD- pysteps.github.io Pulkkinen et al. (2019)
library. 3)
Generative models, sharp Open Source . . :

DGMR Deep Gen (GAN) B . (Apache) github/deepmind Ravuri et al. (2021)

TITAN Centroid Tracking )[Orgjci?;c]—gbased storm cell Open Source (BSD) | www.lrose.net Dixon & Wiener (1993)

SWIRLS Semi-Lagrangian Co'm-SWIRLS version ReSt”Cteq / swirls.hko.gov.hk Li & Lai (2004)
available. Community

MetNet-3 Neural Weather 24h horizon, 2min resolution. Proprietary (API) research.google Sonderby et al. (2020)

Rainymotion | Dense Flow MG T g Open Source (MIT) | github/hydrogo Ayzel et al. (2019)

extrapolation.




Example of 4 methods:
24-25/11/2025 Severe weather event



Rainfall Nowcast Comparison (FSS 2mm/20km)
Valid: 25/11/2025 04:30 UTC (+30 min)
RADAR (Truth) LK - FSS: 0.82 DGMR - FSS: 0.78

STEPS - FSS: 0.88

LINDA - FSS: 0.82

1.0 3.0 5.0 7.0 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0  120.0
mm/hr




Rainfall Nowcast Comparison (FSS 2mm/20km)
Valid: 25/11/2025 05:00 UTC (+60 min)
RADAR (Truth) LK - FSS: 0.67 DGMR - FSS: 0.68

STEPS - FSS: 0.68

LINDA - FSS: 0.70

1.0 3.0 5.0 7.0 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0  120.0
mm/hr




Rainfall Nowcast Comparison (FSS 2mm/20km)
Valid: 25/11/2025 05:30 UTC (+90 min)

RADAR (Truth)

STEPS - FSS: 0.41

LK - FSS: 0.61

LINDA - FSS: 0.59

1.0 3.0 5.0 7.0 10.0 15.0 20.0

25.0 30.0 40.0
mm/hr

DGMR - FSS: 0.73

90.0 100.0 120.0



Rainfall Nowcast Comparison (FSS 2mm/20km)
Valid: 25/11/2025 06:00 UTC (+120 min)
RADAR (Truth) LK - FSS: 0.53

STEPS - FSS: 0.14

LINDA - FSS: 0.55

1.0 3.0 5.0 7.0 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
mm/hr




Thank you for listening
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