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Background
What is rain intensity?

The amount (height) of rain (mm, cm, incs…) in a given duration (1 minute, 30 minutes, 1 hour, 6 hours…) 

Usually it’s expressed in mm/h, i.e. if we measure 10 mm of rain in 10 minutes, the rain intensity is 60 mm/h 

Why study extreme precipitation?

• While most rainfall events are beneficial to society - supporting ecosystems, 

water resources, and agriculture, extreme precipitation events carry a significant 

potential for damage.

• Extreme rainfall events are among the costliest and most disruptive weather 

hazards globally.

• Impacts: urban & riverine flooding, infrastructure damage, landslides, transport 

and water management disruptions, agriculture, landslide and flash floods (in 

rivers and in urban areas)

• Small increases in short-duration intensity can cause non-linear increases in 

flood risk and failures of drainage systems.

• Relevance: design standards, early-warning systems, hydrological modelling, 

climate adaptation planning.

OPB, Alberto Saiz; Valencia, Oct 2024

PBS News, Marwan Alfaituri; Libeya, Sep 2023



Characteristics of sub-daily extreme rainfall events

• High spatial variability / random effects: a single station may 

measure extreme values while surrounding stations remain 

near typical levels intensity. 

• Dynamics: convective organization, storm propagation, 

mesoscale features (e.g., training, coastal convergence).

• Local modifiers: topography, land-use, sea-breeze/coastal 

effects that are strong in the Eastern Mediterranean.

• Thermodynamics: Clausius–Clapeyron scaling affecting 

potential intensities (~7% per degree).

1h: ~75 mm
3h: ~110 mm
SEP. Record!!!

Background



Before starting – examine your data

• Statistical results are only as reliable as the data they are based on

→ Garbage in, garbage out

• Observed (Measured) Data:

➢ Data integrity: completeness, false values, outliers, internal inconsistencies

➢ Missing data: can gaps be reconstructed or reliably imputed?

➢ Instrumentation: maintenance, calibration, sensor drift, firmware issues

➢ Metadata quality: station changes, relocation, equipment upgrades

➢ Temporal consistency: stable sampling intervals, no undocumented breaks

• For modeled data:

➢ Verification: comparison with historical measurements and reference datasets

➢ Data correction: physical / statistical correction 

➢ Plausibility checks: physical consistency and realistic value ranges

➢ Bias identification: systematic over- or under-estimation

➢ Uncertainty assessment: understanding model limitations and spread

@Gemini



Data verification and correction
• Data from model needs to be verified against past measurements:

➢ Compare distributions (PDF, CDF, KS test) – Tx, Tn, Daily rain, 10m rain

➢ Compare extreme values & probabilities – Txx, Tnn, Rx1day, Max-I

➢ Compare trends

Over estimation of the right tail (left panel) leads to 
over estimation of events probability (right panel)

• If the verification results are not good 

enough, a correction for the data needs to be 

applied:

➢ Correct model schemes, parametrizations, etc.

➢ Statistical correction for the results 

(Verification and calibration)



Extreme Value Theory

• Extreme Value Theory (EVT) is a distinct branch of statistics, built on its own principles and limit 
theorems. It often behaves very differently from standard statistical methods that focus on the bulk of the 
data.

Were going to focus on two 
main methods:

Peak Over 
Threshold 
(POT)

Block 
Maxima (BM)



POT BM

Distribution fit
Generalized Pareto Distribution (GPD) for 
exceedances over a threshold.

Generalized Extreme Value (GEV) distribution for block maxima

Fit parameters
Location (μ)- sets the central level of extremes; Shape (ξ)- tail heaviness; and Scale (σ or β)- Spread of values, stretches or compresses 
the distribution horizontally and must be > 0

Main principal
Model all observations that exceed a suitably high 
threshold. Uses the tail of the parent distribution 
behavior directly.

Model only the maximum from each block (year, season, day…). Treats 
maxima as a separate process.

Data used
All exceedances above the threshold → usually many 
more data points than BM. 

Only the largest value per block!

When it’s used
Dense/high-resolution data, use more extreme 
values information. Common in atmospheric science, 
hydrology and finance.

When natural block structure.
When maxima are naturally defined by physical/organizational constraints.

Advantages

Lower confidence intervals (Uses more data)
Allows to use shorter time series
Direct modeling of tail behavior

Simple and intuitive (one max per block)
Avoids threshold selection
Well-established theoretical properties
Good when block maxima are physically meaningful (e.g. yearly design floods)

Disadvantages

Requires threshold selection (bias–variance balance)
Time consuming
Must ensure exceedances are independent
Diagnostics more demanding

Significant loss of information
Larger uncertainty due to small sample size
Block choice can change results
May miss significant extremes
Requires reliable data to get the real maxima – Data verification

Extreme Value Theory (EVT)



General working process
Stage 1: Building data table - Event-Intensity-Duratio

- Verify data, Reconstruct and estimate past data / events, Combine historical data

Event-
Intensity-
Duration (EID) 
table

You set the 
condition to 
differentiate 
INDEPENDENT 
rain events!!! 
(Synoptic, time,…)



General working process
Analyzing rain intensity return periods 

(probability)

Fit distribution:
GPD (Pareto (ξ > 0), 
exponential (ξ = 0), 

Uniform/Power (ξ < 0))
Lognormal, Gamma, Weibull (Non EVT)

Fit distribution:
GEV (Fréchet (ξ > 0), Gumbel 

(ξ = 0), Weibull (ξ < 0))
Lognormal, Gamma, Weibull (Non EVT)

Chose threshold

P = 
1

𝑅𝑃

Verify 
fit 

quality

Estimate events probability 
(RP values) from the fitted 

distribution Verify distribution parameters 
and threshold

Adjust if 
needed

Estimate events probability (RP values) 
from the fitted distribution

An event of 1:100 yr 
can happen year after 

year!!!

Verify fit 
quality



POT Thresholds Selection 

1. Quantile-Based Threshold: 
• Chose an upper quantile (80, 90, 95, 99…) as threshold

2. Mean Residual Life (MRL) plot :                                               

• Look for a region where the plot is approximately linear, indicating that the 
GPD is a reasonable fit above that threshold.

• Threshold is chosen at the beginning of this linear region.
• Xi – Sample, u-Threshold, Nu- Number of samples above u

3. Parameter Stability Plot:
• Fit a GPD to exceedances for different candidate thresholds.
• Plot the estimated shape (ξ) and scale (σ) parameters against the threshold.
• Threshold is chosen where the parameters stabilize (i.e., stop changing 

significantly with increasing threshold).

When using POT,  The final estimate is highly sensitive to the choice of the threshold.
The Trade-off:
• High Threshold → Small sample size: Leads to a high Variance (not enough data).
• Low Threshold → Large sample size : Leads to a high Bias (including non-extreme data), Under estimation of 
events probability



POT Thresholds Selection
4. Automated Methods / Goodness-of-Fit

• Fit GPD to exceedances over candidate thresholds and use 
statistical criteria:

Likelihood-based methods: maximize likelihood or use AIC/BIC.
Kolmogorov–Smirnov test: test GPD fit for different thresholds.
Bootstrap methods: quantify uncertainty of parameter 
estimates.

5. Weighted Hill estimation:
• Weight the exceedance  in a decreasing order
• Calculate the Mean Square Error (MSE) for each chosen 

threshold (Kołodziejczyk and Rutkowska 2023)
• Get the recommended threshold 
• Adjust the threshold

Kołodziejczyk, K.; Rutkowska, A. Estimation of the Peak over Threshold-Based Design Rainfall and Its Spatial Variability in the Upper Vistula River Basin, Poland. Water 2023, 15, 1316. 
https://doi.org/10.3390/w15071316



Data stationerity

• A key assumption in EVT is data stationarity

• Data stationerity is the uniformity of a data set meaning that it is from a single population under consistent conditions

• For data set with varied parameters (mean, std) over time this assumption is invalid

Sources of non stationerity :
• Inhomogeneity: changes in measurement conditions (e.g., instrument, location, resolution, etc.)

• Climate driven changes → Global warming!!!

Non stationerity data will produce:

➢Biased uncertainty ranges

➢Biased return levels

@Gemini



Handling non-stationerity

Homogenization
• Apply homogeneity tests and identify breakpoints in the 

data (more relevant for past data)

• Examine metadata: station relocation, instrument 

changes, maintenance activity, etc.

• Apply adjustments/corrections to the data

Non Stationarity tests
• Fit parameters change over time (for different time 

blocks)

• Use non stationary EVT models (Let σ, μ, ξ depend on 

time or covariates (Heffernan and Stephenson, 2018) and 

examine goodness of fit

• Examine trends, change in mean and std over time

Heffernan, J. E., & Stephenson, A. G. (2018). R package ‘ismev’: An Introduction to Statistical Modeling of Extreme Values.

Address non stationarity
• Split the record into stationary sub-periods (POT / BM)

• Use non-stationary EVT models - Let σ, μ, ξ depend on 
time or covariates
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Finally – IDF’s (Intensity-Duration-Frequency) 



Trend analysis - Main principals 

• Rainfall intensity displays strong spatial variability.
• This variability increases as the duration becomes shorter and the probability 

decreases (return period increases).
• A single extreme event recorded at one station can substantially influence trend 

estimates, while nearby stations did not experience it.
• Moreover, in many series the maximum value is often far higher than the next 

highest observation (sometimes by 50% or more), and such large gaps can strongly 
affect OLS-based trend analyses.

Use areal analysis
Use non-parametric methods 



Southern coastal line

p-Value < 0.1 (+);  p-Value < 0.05 (*);  p-Value < 0.01 (**)

Trend analysis- Results example

• Stronger trends are observed when 
shorter periods are analyzed

• Smoothed BM values (LOWESS filter) 
support these results



Compare periods - Main principals 

When splitting a time series into several sub-periods, the resulting segments are often too short for reliable BM analysis, 
as the large uncertainty usually prevents detecting meaningful differences.
In such cases, use the POT method with a constant quantile-based threshold applied to all periods.

X5

X2

1970-1997

1998-2024

Valleys area

• Uncertainty increases as 
the duration becomes 
shorter and the probability 
decreases.

• The growth factor 
increases as the 
probability decreases.



Quantile regression on EID for duration I-30. 

Allows to explore the change in the whole distribution (instead the mean / median / maximal value)

Northern Coast Coast

Low quantiles, significant 
decrease

High quantiles, significant 
increase

99

95

90

75

50

25
10

Examine changes in total rain intensities



Examine changes in total rain intensities

Summary / Conclusions:

• Influence critical sectors, including infrastructure, energy, transportation, agriculture, and public 

safety.

• Predicting rain intensities improves preparedness across sectors such as infrastructure, emergency services, 

and drainage systems.

• High-quality, long, and reliable data are essential for accurate rain-intensity prediction.

• Two extreme-value fitting methods were presented — POT and BM. Both are appropriate for hydrological 

and atmospheric use, and the decision between them depends on data limitations and local conditions.

• Due to the high spatial variability of rain intensity, an areal analysis is recommended. 

• It is also recommended to organize the data in EID tables, as they allow better exploration of the dataset 

and offer multiple analysis options.

• Due to the changing climate, the non-stationarity of the data must be examined and taken into 

consideration.



Thank you for 
listening!!!

Questions??

ziporia@ims.gov.il



Quantile Difference Mapping (QDM)

• Cannon, Alex J., Stephen R. Sobie, and Trevor Q. Murdock. "Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and 

extremes?." Journal of Climate 28.17 (2015): 6938-6959.

• Cannon, Alex J. "Multivariate bias correction of climate model output: Matching marginal distributions and intervariable dependence structure." Journal of Climate 29.19 (2016): 7045-7064.

• Cannon, Alex J. "Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables." Climate 

dynamics 50.1 (2018): 31-49.

Working process:

i. QDM for calibration period (1980-2004)

ii. QDM for validation period (2005-2014)

iii. Examine performance in validation period

iv. QDM for operative calibration (1980-2014)

v. QDM for projected blocks of time (2015-2030, 2031-2060, 

2041-2070, 2051-2080… 2070-2100)

vi. Create projected time series

Projected data
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