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Extreme precipitation and rain intensities:
observed and projected trends - Main key points
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What is rain intensity?

The amount (height) of rain (mm, cm, incs...) in a given duration (1 minute, 30 minutes, 1 hour, 6 hours...)

Usually it’s expressed in mm/h, i.e. if we measure 10 mm of rain in 10 minutes, the rain intensity is 60 mm/h

Why study extreme precipitation?

* While most rainfall events are beneficial to society - supporting ecosystems,
water resources, and agriculture, extreme precipitation events carry a significant
potential for damage.

* Extreme rainfall events are among the costliest and most disruptive weather

hazards globally.

* Impacts: urban & riverine flooding, infrastructure damage, landslides, transport
and water management disruptions, agriculture, landslide and flash floods (in
rivers and in urban areas)

* Small increases in short-duration intensity can cause non-linear increases in
flood risk and failures of drainage systems.

* Relevance: design standards, early-warning systems, hydrological modelling, w5 % nE
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@ Background

Characteristics of sub-daily extreme rainfall events

 High spatial variability / random effects: a single station may
measure extreme values while surrounding stations remain

near typical levels intensity.

* Dynamics: convective organization, storm propagation,
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mesoscale features (e.g., training, coastal convergence).

1h: ~75 mm
3h: ~110 mm
SEP. Record!!!

* Local modifiers: topography, land-use, sea-breeze/coastal

effects that are strong in the Eastern Mediterranean.

mm

* Thermodynamics: Clausius—Clapeyron scaling affecting

potential intensities (~7% per degree).




Q@ Before starting —examine your data

« Statistical results are only as reliable as the data they are based on
— Garbage in, garbage out

* Observed (Measured) Data:

» Data integrity: completeness, false values, outliers, internal inconsistencies
Missing data: can gaps be reconstructed or reliably imputed?
Instrumentation: maintenance, calibration, sensor drift, firmware issues

Metadata quality: station changes, relocation, equipment upgrades

YV V V VY

Temporal consistency: stable sampling intervals, no undocumented breaks

« For modeled data:
» Verification: comparison with historical measurements and reference datasets
Data correction: physical / statistical correction
Plausibility checks: physical consistency and realistic value ranges
Bias identification: systematic over- or under-estimation

YV V V VY

Uncertainty assessment: understanding model limitations and spread



qp Data verification and correction

* Data from model needs to be verified against past measurements:

» Compare distributions (PDF, CDF, KS test) — Tx, Tn, Daily rain, 10m rain
» Compare extreme values & probabilities — Txx, Tnn, Rx1day, Max-I

» Compare trends
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> Statistical correction for the results
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% Extreme Value Theory

» Extreme Value Theory (EVT) is a distinct branch of statistics, built on its own principles and limit
theorems. It often behaves very differently from standard statistical methods that focus on the bulk of the

data.

Were going to focus on two
main methods:

Block
Maxima (BM)

Density

Peak Over
Threshold
(POT)

Value



Distribution fit

Fit parameters
Main principal
Data used

When it’s used

Advantages

Disadvantages

POT

Generalized Pareto Distribution (GPD) for
exceedances over a threshold.

% Extreme Value Theory (EVT)

Generalized Extreme Value (GEV) distribution for block maxima

Location (p)- sets the central level of extremes; Shape (§)- tail heaviness; and Scale (o or B)- Spread of values, stretches or compresses

the distribution horizontally and must be > 0

Model all observations that exceed a suitably high
threshold. Uses the tail of the parent distribution
behavior directly.

All exceedances above the threshold = usually many
more data points than BM.

Dense/high-resolution data, use more extreme
values information. Common in atmospheric science,
hydrology and finance.

Lower confidence intervals (Uses more data)
Allows to use shorter time series
Direct modeling of tail behavior

Requires threshold selection (bias—variance balance)
Time consuming

Must ensure exceedances are independent
Diagnostics more demanding

Model only the maximum from each block (year, season, day...). Treats
maxima as a separate process.

Only the largest value per block!

When natural block structure.
When maxima are naturally defined by physical/organizational constraints.

Simple and intuitive (one max per block)

Avoids threshold selection

Well-established theoretical properties

Good when block maxima are physically meaningful (e.g. yearly design floods)

Significant loss of information

Larger uncertainty due to small sample size

Block choice can change results

May miss significant extremes

Requires reliable data to get the real maxima — Data verification
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% General working process

Stage 1: Building data table - Event-Intensity-Duratio

You set the
- Verify data, Reconstruct and estimate past data / events, Combine historical data condition to
Tm_Beg Tm_End RnT 1-10 1-30 I-60 I-120 1-240 T-10 T-30 T-60 T-120 T-240 dlffe re ntlate

0 23/04/197120:44  24/04/1971 6:04 24 78 3 17 09 0.4 23/04/1571 20:54 | 23/04/197121:14 | 23/04/197121:44  23/04/197122:44  24/04/19710:44
1 25/10/1971 14:27 26/10/1871 7:36 12 366 226 115 5.8 28 25/10/1871 14:37 25/10/1871 14:57 25/10/1971 15:27 25/10/1971 16:27 25/10/1971 18:27 INDEPENDENT
2 15/11/1971 21.08 18/11/1971 7:39 341 24 B2 5 4 26 17/11/1971 18:18 17/11/1971 18:18 17/11/1971 12:28 17/11/1971 13.04 17/11/1971 15:25 .
3 06/12/1971 B:50 09/12/1571 7:33 453 282 116 7.1 57 39 07/12/1971 5:10 07/12/1971 5:26 08/12/1971 B:50 08/12/1871 B:36 08/12/1971 9:14 railn eve ntS I l I
4 12/12/1971 22:10 13/12/1971 754 11.1 12 5 41 27 18 12/12/1971 23:06 12/12/1571 23:06 1271271971 23:10 13/12/1971 048 13/12/1871 2:10 . .
5 17/12/1897120:01  19/12/19717:37 411 10.2 g2 7 6.8 5.5 17/12/187123:10  18/12/1971 3:14 18/12/1971 1:39 18/12/1871 1:43 18/12/1871 3:00 (Synoptlc , time yor )
] 20/12/1971 23:35 21/12/1971 6:50 3.3 2.4 2 1.2 0.9 0.6 21/12/1971 1.42 2171271971 2.01 21/1271971 2:32 21/12/1971 2:01 21/12/1971 3:35
7 24/1271971 1723 26/12/1971 646 18.3 24 16.2 g4 5.1 28 25/12/1971 11:22 25/12/1871 11:25 2501271971 11:32 25/12/1971 11:48 25/12/1971 1417
8 27/12/1971 8:14 28/12/1971 11:42 145 16.8 116 6.4 3.8 2.1 27/12/1971 9:06 2701271971 9:08 27/12/1971 9:21 27/12/1971 10:34 27/12/1971 12:14
] 30/12/1971 16:34 01/01/1972 1746 9.2 & 36 23 14 0.7 31/12/1971 16:32 31/12/1971 16:35 01/01/1972 17:32 01,/01/1972 1746 01/01/1972 1746
10 13/01/1972 15:46 17/01/1972 7:27 52.2 198 116 74 39 27 16/01/1972 17:41 16/01/1972 17:52 16/01/1972 18:13 16/01/1972 18:13 15/01/1972 1:23
11 22/01/1972 8:00 23/01/1972 7:21 g 126 52 3B 26 1.3 22/01/1972 9:17 22/01/1972 9:12 22/01/1972 9:19 22/01/1972 10:00 220171972 12:00
12 27/01/1972 1339 28/01/1972 6:03 3.3 144 56 29 15 0.7 27/01/1972 13:49 27/01/1972 14.00 27/01/1972 14:39 27/01/1972 15:39 27/01/1972 1739 Eve nt_
13 31/01/1972 10:59 01/02/1972 758 39 48 292 16.1 21 52 01/02/1972 7:29 01/02/1972 7:38 01,/02/1972 7:55 01/02/1972 7:58 01/02/1972 7:58
14 03/02/1872 8:25 DB/02/15972 B:00 716 168 %6 78 59 45 06/02/1972 1:41 06,/02/1972 2:58 06/02/1972 3:27 06,/02/1872 3:31 06/02/1972 4:55 I nte n Sit .
15 16/02/1972 16:53 19/02/1972 1:42 221 16.8 114 7 3.6 24 17/02/1972 11:15 17/02/1972 11:23 17/02/1972 11:23 17/02/1972 11:23 17/02/1972 11:23 y
16 13/03/1972 1854 18/03/1972 5:38 828 204 198 138 9.6 24 16/03/1972 23:44 16/03/1972 23:55 16/03/1972 23:55 17/03/1972 0:43 17/03/1972 2:46 D u rati O n ( EI D)
17 20/03/1972 21:38 21/03/1972 758 10.2 6.6 46 3.1 22 15 20/03/1972 22:22 21/03/1972 4:40 21/03/1972 4:37 21/03/1972 5:24 21/03/1972 7:29
18 04/04/15972 0:30 04/04/1872 1:55 38 13.2 48 37 2 1 04/04/1972 0:40 04/04/1972 1:00 04/04/1972 1:30 04/04/1972 1:55 04/04/1972 1:55
19 09,/04/1972 19:39 11/04/1972 7:15 293 312 11 6.9 5.1 29 10/04/1972 10:12 10/04/1572 10:31 11/04/1972 5:03 11/04/1972 5:03 11/04/1972 6:09 table
20 29/04/1972 12:32 29/04/1972 13:49 57 174 & 3B 29 14 29/04/1972 12:42 29/04/1972 13:02 29/04/1972 13:32 29/04/1972 13:49 29/04/1972 1349
21 28/10/1972 8:07 29/10/1972 749 B5S g 36 2 12 09 29/10/1972 1:22 28/10/1972 16:15 29/10/1972 1:22 29/10/1972 1:22 28/10/1972 19:19
22 02/11/197223:22  04/11/1972 6:48 11 6.6 5.2 29 15 1.1 04/11/1872 5:25 04/11/1972 5:44 04/11/1972 5:49 04/11/1972 6:48 03/11/1972 3:22
23 14/11/1872 4:21 1471171972 7:16 249 54 28 18 1.2 0.7 14/11/1972 6:14 14/11/1972 6:34 14/11/1972 B:39 14/11/1972 6:37 14/11/1972 7:16
24 24(11/1972 8:03 24/11/1972 23:34 21 24 16 08 0.5 0.4 24/11/1972 9:03 24(11/1972 12:10 24/11f1972 12:16 241171972 12:16 241171972 12:10
25 27/11/1572 8:.01 2971171972 7:30 74 144 6.2 35 19 1 29/11/1972 6:01 2901171972 6:11 29/11/1972 6:01 29/11/1972 6:11 29/11/1972 7:30
26 18/12/1972 1623 21/12/1972 12:48 56.1 234 13 97 7.2 48 20/12/1972 10:48 20/12/1972 11:10 20/12/1972 11:06 20/12/1972 12:05 20/12/1972 14.06
27 12/01/1873 9:15 13/01/1873 7:36 125 132 46 28 26 14 12/01/1873 20:09 12/01/1873 20:15 12/01/1973 22:03 12/01/1973 21:57 12/01/1973 22:08
28 14/01/1973 8:19 18/01/1973 6:08 63.4 96 B2 8 5.5 39 15/01/1973 3:31 15/01/1973 3.08 15/01/1973 3:39 15/01/1973 4:13 15/01/1973 4:13
29 27/01/1973 B:35 2B/01/1973 714 19.7 228 10.4 56 3.4 2.2 28/01/1973 5.09 2B/01/1973 5:29 28/01/1973 5:35 28/01/1973 6:59 28/01/1973 7:14
30 30/01/1973 12:07 01/02/1973 3:31 283 204 13.2 BB 57 3B 31/01/1973 11:43 31/01/1873 11:44 3170171973 11:44 31/01/1973 11:44 31/01/1973 1313
31 22/02/1973 9:58 24/02/1973 6:24 127 B4 432 36 28 15 23/02/1973 16:31 23/02/1973 17:35 23/02/1973 17:18 23/02/1973 1750 23/02/1973 1809
32 02/03/1973 1759 03/03/1973 12:52 335 24 13.4 78 3.9 3 02/03/1973 18:15 02/03/1973 18:35 02/03/1973 18:59 02,/03/1973 1959 03/03/1973 5:12
33 05/03/1973 23:31 08/03/1973 6:10 481 282 128 B2 47 3.1 06/03/1973 19:13 06/03/1973 19:33 06/03/1973 19:50 06/03/1973 7:43 06/03/1973 8:29
34 20/03/1973 9:41 21/03/1973 757 3.3 5] 28 16 1 0.6 21/03/1973 5:19 21/03/1973 5:19 21/03/1973 5:49 21/03/1973 6:47 21/03/1973 7.57



) .
@ General working process

1 Analyzing rain intensity return periods
= — (probability)
RP
An event of 1:100 yr
can happen :/'elar after Fit distribution: Chose threshold
year::: GEV (Fréchet (€ > 0), Gumbel
(€ = 0), Weibull (¢ < 0))
Lognormal, Gamma, Weibull (Non EVT) Fit distribution:
BEER SHEVA | 15 GPD (Pareto (g > 0),
AN = exponential (§ = 0),
. J b Uniform/Power (€ < 0))
: \ Lognormal, Gamma, Weibull (Non EVT)

e Estimate events probability ve;:?i'tﬁt
N=-74 Bandwidih - 4.246 (RP Va|UES) from the fitted q y

N fevd(x = station$Maxl, type = "GEV", method = GevMethod) dlstr|but|0n Verlfy dlstrlbutlon pa ra mete rs
and threshold

ﬁ% | o Estimate events probability (RP values)
from the fitted distribution

babilities

Model Prol




@ POT Thresholds Selection

When using POT, The final estimate is highly sensitive to the choice of the threshold.
The Trade-off:
e High Threshold - Small sample size: Leads to a high Variance (not enough data).

e Low Threshold - Large sample size : Leads to a high Bias (including non-extreme data), Under estimation of
events probability

Mean residual life with 95% CI

1. Quantile-Based Threshold:
* Chose an upper quantile (80, 90, 95, 99...) as threshold

Threshold (2.37 m):

2. Mean Residual Life (MRL) plot :| MRL(u) — iz ’ﬁf"L ) \

* Look for a region where the plot is approximately linear, indicating that the
GPD is a reasonable fit above that threshold.

* Threshold is chosen at the beginning of this linear region.

e X;,—Sample, u-Threshold, N,- Number of samples above u

3. Parameter Stability Plot:
* Fit a GPD to exceedances for different candidate thresholds.
* Plot the estimated shape (§) and scale (o) parameters against the threshold. | e

Fhreshold Hs (m)
* Threshold is chosen where the parameters stabilize (i.e., stop changing
significantly with increasing threshold).



@ POT Thresholds Selection

4. Automated Methods / Goodness-of-Fit
* Fit GPD to exceedances over candidate thresholds and use
statistical criteria:

Likelihood-based methods: maximize likelihood or use AIC/BIC.
Kolmogorov—Smirnov test: test GPD fit for different thresholds.

Bootstrap methods: quantify uncertainty of parameter
estimates.

5. Weighted Hill estimation:
* Weight the exceedance in a decreasing order
* Calculate the Mean Square Error (MSE) for each chosen
threshold (Kotodziejczyk and Rutkowska 2023)
* Get the recommended threshold
e Adjust the threshold

Kotodziejczyk, K.; Rutkowska, A. Estimation of the Peak over Threshold-Based Design Rainfall and Its Spatial Variability in the Upper Vistula River Basin, Poland. Water 2023, 15, 1316.

https://doi.org/10.3390/w15071316
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@ Data stationerity

* A key assumption in EVT is data stationarity

« Data stationerity is the uniformity of a data set meaning that it is from a single population under consistent conditions

* For data set with varied parameters (mean, std) over time this assumption is invalid

Sources of non stationerity :

* Inhomogeneity: changes in measurement conditions (e.g., instrument, location, resolution, etc.)

* Climate driven changes - Global warming!!!

Non stationerity data will produce:
» Biased uncertainty ranges
» Biased return levels
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@ Handling non-stationerity

Comparing 1-30 in ZEFAT HAR KENAAN
RR V.5. Auto

Homogenization
* Apply homogeneity tests and identify breakpoints in the

y=0.939 x + 0.285 R 1:1 line

14{ R?=0.974 2003
- 2004

data (more relevant for past data)

* Examine metadata: station relocation, instrument
changes, maintenance activity, etc.

* Apply adjustments/corrections to the data

Non Stationarity tests

0 2 4 6 8 10 12 14

* Fit parameters change over time (for different time 30 in ZEFAT HAR KENAAN RR, [mm/hr]
blocks)
e Use non stationary EVT models (Let o, Y, £ depend on Address non Stationarity
time or covariates (Heffernan and Stephenson, 2018) and + Split the record into stationary sub-periods (POT / BM)
examine goodness of fit « Use non-stationary EVT models - Let o, W, £ depend on
 Examine trends, change in mean and std over time time or covariates

Heffernan, J. E., & Stephenson, A. G. (2018). R package ‘ismev’: An Introduction to Statistical Modeling of Extreme Values.



% Finally — IDF’s (Intensity-Duration-Frequency)
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* Rainfall intensity displays strong spatial variability.

* This variability increases as the duration becomes shorter and the probability

decreases (return period increases).

% Trend analysis - Main principals

* Asingle extreme event recorded at one station can substantially influence trend
estimates, while nearby stations did not experience it.
 Moreover, in many series the maximum value is often far higher than the next
highest observation (sometimes by 50% or more), and such large gaps can strongly

affect OLS-based trend analyses.

Use areal analysis
Use non-parametric methods

Area

[ northern coastal plain
Central coastal plain
[ southern coastal plain
[ valleys

[l Northern mountains

[ Central mountains

B semi arid

Value

( Maximal 20 values from Galed, 30 \
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@ Trend analysis- Results example

Southern coastal line

Period 1970-2024 1995-2024 —— Max-| ===~ MK regression (Full) === MK regression (Short) —— Smoothed Max-I
Slope Change Slope Change
[(mm/h)/Decade] rate [(mm/h)/Decade] rate 140 I-}0 1 t 901 ™
1-10 2.5 17% 74 27% A A ’\ 80
115 2.6 23% 8.9* 42% o f -
1-30 1.8 24% 8.5" 74% a0l 1 - 50
1-45 1.4 23% 6.0 61% vil V V v \l W y P 3 o
1-60 1.4+ 28% 4 .4* 53% %0 | : i 30
1-90 0.9 24% 3.6+ 56% 40
1-120 0.7 25% 3.4+ 64% = 20 =
1180 0.8+ 36% 2.3+ 52% £ &
1-240 0.6+ 33% 1.8+ 53% -g-
% o | 160 . 30{ 1-180
p-Value < 0.1 (+); p-Value < 0.05 (*); p-Value <0.01 (**) z - ; f M 25 r/\
) | . }/ o, L
e WA !
e Stronger trends are observed when 3 15 A ATV VA
shorter periods are analyzed 2° ol v
. 10 5
 Smoothed BM values (LOWESS filter)
Support these re5U| tS 1970 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020
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@ Compare periods - Main principals

When splitting a time series into several sub-periods, the resulting segments are often too short for reliable BM analysis,
as the large uncertainty usually prevents detecting meaningful differences.

In such cases, use the POT method with a constant quantile-based threshold applied to all periods.

Valleys area

---- 1970-1997

95% Cl, 1970-1997 —— 1998-2024

95% ClI, 1998-2024
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@ Examine changes in total rain intensities

Quantile regression on EID for duration I-30.

Allows to explore the change in the whole distribution (instead the mean / median / maximal value)
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@ Examine changes in total rain intensities

Summary / Conclusions:

Influence critical sectors, including infrastructure, energy, transportation, agriculture, and public
safety.

Predicting rain intensities improves preparedness across sectors such as infrastructure, emergency services,
and drainage systems.

High-quality, long, and reliable data are essential for accurate rain-intensity prediction.

Two extreme-value fitting methods were presented — POT and BM. Both are appropriate for hydrological
and atmospheric use, and the decision between them depends on data limitations and local conditions.
Due to the high spatial variability of rain intensity, an areal analysis is recommended.

It is also recommended to organize the data in EID tables, as they allow better exploration of the dataset
and offer multiple analysis options.

Due to the changing climate, the non-stationarity of the data must be examined and taken into

consideration.
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Quantile Difference Mapping (QDM)

Working process:

10 - i. QDM for calibration period (1980-2004)

ii. QDM for validation period (2005-2014)
0% iii. Examine performance in validation period
o iv. QDM for operative calibration (1980-2014)

v. QDM for projected blocks of time (2015-2030, 2031-2060,
2041-2070, 2051-2080... 2070-2100)

Model Calib vi. Create projected time series
Corrected Model

F(x)

emms Obsorved
0.4

0.2 —— Model Projected

—— Projected corrected

QD! for 2041-2070

0.0
0 5 10 15 20 25 30 35

QDM for 2061-2090

QDM for 2071-2100

x

1
1
1
1
Projected data 2041-2050 2061-2070 2071-2100

« Cannon, Alex J., Stephen R. Sobie, and Trevor Q. Murdock. "Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and
extremes?." Journal of Climate 28.17 (2015): 6938-6959.

« Cannon, Alex J. "Multivariate bias correction of climate model output: Matching marginal distributions and intervariable dependence structure.” Journal of Climate 29.19 (2016): 7045-7064.

« Cannon, Alex J. "Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables." Climate
dynamics 50.1 (2018): 31-49.
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