
1

CAP-103 XML for CAP Implementors

World Meteorological Organization (WMO)
Public Weather Services (PWS) Programme

WMO

XML for CAP
Implementors

The title of this a presentation is “XML for CAP Implementors”.

This presentation is designed to be part of a series of training sessions
that cover various aspects pertaining to CAP-enabled alerting systems.

The recommended pre-requisite for this session is “Introducing CAP”
(CAP-101) .

2

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 2

CAP Uses XML for
Representing Information

CAP

This diagram depicts CAP as a standard form, providing a common way
of representing certain information on just about any kind of hazard threat
or event.

The idea is to get some of that crucial information in the same format, so it
is easier for people to process what they need to know.

Extensible Markup Language (XML) is the standard mechanism used to
represent the information in CAP alerts and in CAP news feeds . So,
some familiarity with XML is very important for a CAP implementor.

Let’s look at what is in the training session specifically.

3

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 3

Learning Objectives

On completion of this session, you should be able to:
1. Explain what is XML and where the definitions of CAP

elements are found.
2. Describe how elements contain other elements, such

as the CAP headline sub-element of the info element.
3. Explain the basics of creating and validating a CAP

alert according to XML syntax and a version schema.
4. Distinguish among the XML for a CAP alert and the

XML for an RSS news feed pointing to CAP alerts.
5. Explain why it would be useful for a Web site to

include a customized stylesheet for its CAP alerts.

Here are the Learning Objectives for this session.

On completion of this session, you should be able to:

1. Explain what is XML and where the definitions
of CAP elements are found.

2. Describe how elements contain other elements, such
as the CAP headline sub-element of the info element.

3. Explain the basics of creating and validating a CAP alert according to
XML syntax and a specific version schema.

4. Distinguish among the XML for a CAP alert and the
XML for an RSS news feed pointing to CAP alerts.

5. Explain why it would be useful for a Web site to
include a customized stylesheet for its CAP alerts.

4

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 4

Presentation Outline

103.1 Introducing XML Basics
103.2 Making Sure XML is Correct
103.3 Editing XML
103.4 Using CAP 1.1 Data Dictionary
103.5 Advanced Topics in XML

Here is an outline of the major topics in this presentation.

The first topic is titled: Introducing XML Basics

5

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 5

What is XML?
eXtensible Markup Language (XML) represents
structured information within a “document”, e.g.,
<alert>
<identifier>urn:oid:2.49.0.1.756.0.2012.10.20.8.30.00</identifier>

<sender>eliot.christian@meteoswiss.ch</sender>
<sent>2012-10-20T08:30:00-00:00</sent>
<info><headline>Electrical power failure, Geneva</headline></info>

</alert>

• Structured information is delineated by element
“tags” (within angle brackets <.>)

• HTML has pre-defined elements,
defining how to display information

• XML has locally-defined elements,
defining other characteristics of the information

eXtensible Markup Language (XML) provides mechanisms
to represent structured information within a container called a “document”.
Structured parts of the information are delineated
by “tags” that are inserted as “markup” tokens using angle brackets.

HTML is also a markup language, but in HTML the tags are
pre-defined in a generic HTML schema. HTML tags are mostly concerned
with how to display the information (e.g., for bold).

In XML, the tags are mostly concerned with delineating among different
pieces of information. XML tags are locally-defined in a shema peculiar to
that set of information. It has been said that
HTML focuses on how the pieces of information should look
while XML focuses on what the pieces of information are .

Here we see an example of a fragment of a CAP message in XML:
<alert>
<identifier>urn:oid:2.49.0.1.756.0.2012.10.20.8.30.00</identifier>
<sender>eliot.christian@meteoswiss.ch</sender>
<sent>2012-10-20T08:30:00-00:00</sent>
<info>

<headline>Electrical power failure, Geneva</headline>
</info>

</alert>

The tags in this example (alert, identifier, sender, sent, info, headline) are
defined in the CAP schema.

Notice that each element begins with its “start tag” and ends with its “end
tag”. As in HTML, the value of the end tag is always the same as the start
tag except that it begins with a forward slash. For instance, the “alert”
element in this example is the entire fragment.

6

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 6

In the example fragment, the XML root
(“top-level element”) is “alert”

The “alert” element is parent
of child element “info”

The “alert/info” element is parent
of “headline” element

XML Document Elements

headline

info

sent

sender

identifier

alert

Element attributes are given: name=“value”, e.g.,
<cap:alert xmlns:cap="urn:oasis:names:tc:emergency:cap:1.1">

“Elements” are the major pieces of an XML document. The XML
document is said to have a “tree structure”, with its “top-level element”
also called its “root” element. Every XML document has
a root element, and in CAP that element has the tag name “alert”.

Each element of the XML document can contain one or more other
elements. This feature gives the document a branching structure, looking
at elements as branching nodes.

A node that contains other nodes is said to be the “parent” node; nodes
contained within it are called its “child” nodes. Child nodes
on the same level are called “siblings” of each other.

It is important to note that XML Elements must be properly nested.
(HTML in practice often tolerates improper nesting of tags.)

In addition to containing other elements, each elements can have text
content and it can have “attributes” as well.

Attributes are given in name=value pairs and the attribute value must
always have quotes around it. The namespace attribute “xmlns” is
required in a CAP document, as an attribute of the root element as shown
here.

In comparison to elements, attributes are more difficult to read and
maintain, they cannot contain multiple values, and they are not as easily
expandable later. Accordingly, the CAP schema avoids attributes in favor
of elements.

7

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 7

• Tag names are case-sensitive and
end-tags must match start-tags exactly

• Note the ‘empty-element tag’ <example/>
• Tag names contain letters, numbers,

and other characters but not spaces
• Tag names cannot start with a number,

punctuation, or ‘xml’
• Prefer underscore separator rather

than dash, period, colon, or semi-colon
• Although non-ASCII letters are legal in XML

names, some software may not support them

Element Tag Names

XML tag names are case-sensitive, and the start and end tags must
match exactly, including the case of the letters in the tag name.

Here, I want to note the special case of an empty-element tag. If you have
an end-tag immediately following its start-tag, then the element has a
value of “empty”. This can also be coded using just a single tag, where the
forward slash is at the right end of the tag.

There are several rules for tag names of XML elements:

• Names can contain letters, numbers, and other characters but not
spaces

• Names cannot start with a number, a punctuation character, or the
letters xml (in any case)

• Names in XML should use underscore for a separator rather than a
dash, period, colon, or semi-colon.

• Although non-ASCII letters legal in XML names, some software may
not support them.

In the CAP schema, element names follow the convention known as
“lower camel case”. In “camel case”, multiple words of a name are just
concatenated in lower case except that a capital letter denotes each new
word (and so sticks up like the hump of a camel). Then, depending on
whether the first letter of the whole name is capitalized, we have “upper
camel case” or “lower camel case”.

8

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 8

C
A

P
 D

oc
um

en
t

O
bj

ec
t M

od
el

Here we see all of the CAP element names.

This is the CAP Document Object Model, as it is shown in the
specification for CAP version 1.1.

You can see that all elements are shown, including their nested
relationships. Also, all mandatory elements are shown in bold.

We will be looking at these elements in detail.

9

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 9

Data Types

• Most CAP elements use data type “string”

• Four CAP elements (sent, effective, onset,
expires) use data type “dateTime”
2002-05-24T16:49:00-07:00

• Two CAP elements use data type “anyURI”
• One CAP elements uses data type “integer”
• One CAP element uses data type “language”

(RFC 3066) where “en-US” indicates US
English and “fr-CA” indicates Canadian French

In the CAP schema, most of the elements have the data type “string”
which means they can contain any text.

Four elements in the CAP schema have the data type “dateTime”: sent,
effective, onset, and expires.

Here is an example of the dateTime format:
2002-05-24T16:49:00-07:00

which is 24 May 2002 at 16: 49 Pacific Daylight time, an offset of seven
hours from UTC (Universal Time Coordinated, which you might have
known as Greenwich Mean Time or “Z” / “Zulu”.

Two elements have the data type “anyURI”, which usually contains
a URL.

One element has the data type “integer”.

One other element has the data type “language”, which is the data type
commonly used on the Internet.

10

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 10

Enumerated Values

UnknownUnknownUnknown

UnlikelyMinorPast

PossibleModerateFuture

LikelySevereExpected

ObservedExtremeImmediate

CertaintySeverityUrgency

Error

AckTest

PrivateCancelSystem

RestrictedUpdateExercise

PublicAlertActual

MsgTypeScopeStatus

R
escue

E
nv

R
escue

F
ire

O
ther

Infra

H
ealth

S
ecurity

S
afety

M
et

G
eocategory

Many of the elements in a CAP alert are constrained to one or more
choices from among a list of “enumerated values”. These values must be
entered exactly as given in the schema.

When a CAP alert is edited with a Web form, the values would be
selected through a “pull-down” list or “check boxes”.

11

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 11

Presentation Outline

103.1 Introducing XML Basics
103.2 Making Sure XML is Correct
103.3 Editing XML
103.4 Using CAP 1.1 Data Dictionary
103.5 Advanced Topics in XML

Again, here is the presentation outline.

The next topic is titled:
Making Sure XML is Correct

12

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 12

Checking "Well-formed" and "Valid"

• Because the CAP alert is represented in XML, the tools
of XML are used to assure that the content is correct

• The first check is whether the CAP alert file conforms
with the rules for “well-formed” XML

• The CAP alert file must also conform to rules given in
the XML Schema for the CAP version

• A CAP alert file that fails validation can be rejected
completely (not processed at all)

• ALWAYS VALIDATE CAP MESSAGES

To check a CAP alert represented in XML, we need to use the tools of
XML to assure that the content is correct.

The first check is whether the CAP alert file conforms to the rules for “well-
formed” XML. That is: the XML document has a root element, all elements
have matched start and end tags, nested elements are properly nested,
and any attribute values are quoted.

The CAP alert file must also conform to rules given in the XML Schema
for the CAP version. That XML Schema is found in the official
specification of each CAP version, as published by OASIS and ITU.

A CAP alert file that fails validation can be rejected completely (not
processed at all). Failing validation could result in an alert failing to be
sent to many people who should have been alerted, so it is very
important to always validate CAP messages!

13

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 13

CAP Versions

• Four versions implemented: 0.9, 1.0, 1.1, and 1.2
most common: 1.1 (2005) ; newest: 1.2 (2010)

• Version indicated by namespace of top-level element
<alert xmlns:="urn:oasis:names:tc:emergency:cap:1.1">

• Pay close attention to the CAP Data Dictionary in the
specification for the CAP version being implemented

Four versions of CAP have been widely implemented: 0.9, 1.0, 1.1, and
1.2. Today, the most common version is version 1.1 (2005) although the
newest version is 1.2 (2010).

Most CAP servers accept version 1.1; many accept 1.1. and 1.2.

The version of CAP being used is given in the namespace attribute of the
top-level element (“alert”) in the CAP XML. For example,
this is what you would find in the XML for an alert in CAP v. 1.1 <alert
xmlns="urn:oasis:names:tc:emergency:cap:1.1">

Pay close attention to the CAP Data Dictionary provided in the official
specification for the CAP version that you are implementing.

In addition to conformance with a CAP version, an alerting authority may
be required to also make its alert conform with a CAP Profile.
A Profile puts additional constraints on a CAP alert, but first the
CAP alert MUST be valid to a CAP version.

14

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 14

D
ra

ft
C

A
P

 A
le

rt

<?xml version="1.0" encoding="UTF-8"?>
<cap:alert xmlns:cap="urn:oasis:names:tc:emergency:cap:1.1">
<cap:identifier>urn:oid:2.49.0.1.756.0.2012.10.20.8.30.00</cap:identifier>
<cap:sender>eliot.christian@meteoswiss.ch</cap:sender>
<cap:sent>2012-10-20T08:30:00-00:00</cap:sent>
<cap:status>Actual</cap:status>
<cap:msgType>Alert</cap:msgType>
<cap:scope>Public</cap:scope>
<cap:info>

<cap:category>Infra</cap:category>
<cap:event>power failure</cap:event>
<cap:urgency>Immediate</cap:urgency>
<cap:severity>Minor</cap:severity>
<cap:certainty>Observed</cap:certainty>
<cap:senderName>Eliot Christian</cap:senderName>
<cap:headline>Electrical power failure at Geneva, airport to lake and river.</cap:headline>
<cap:description>Geneva, airport to lake and river, is experiencing power failure.

All buildings and facilities are affected. </cap:description>
<cap:instruction>Remain calm. There is NO need for an evacuation. Drive

carefully as traffic lights might be off. Turn off air conditioners and
heavy machinery. Follow instructions from local authorities and

listen to news media for further information.</cap:instruction>
<cap:area>

<cap:areaDesc>Geneva, airport to lake and river</cap:areaDesc>
</cap:area>

</cap:info>
</cap:alert>

In a later session (CAP-105), you can work through exactly how to select
appropriate values for a particular CAP alert. Here I am simply showing a
complete draft CAP alert so you can see its XML format.

XML can be entered “freeform” using any text editor. We will have some
more to note later about certain editing cautions.

Now we should look at the first line of the XML file. This is known as the
XML Processing Instruction. It is identified by the ?xml where you would
expect a tag if it were an element.

You see here the processing instruction has two attributes: version and
encoding. For a CAP alert, you should enter this line exactly as shown
here.

Once you are finished editing the file, you should save it with a “.xml” file
extension. Also, be sure to use “save as” and select “UTF-8” encoding, as
will be explained later.

15

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 15

ht
tp

://
ca

p-
va

lid
at

or
.a

pp
sp

ot
.c

om
/

The XML validation function is included in all programming languages
commonly used with Web sites (Java, PHP, Perl,
Visual Basic, etc.) I’m not going to show how to invoke XML validation as
a programmer. Suffice it to say that you will need
to point to the appropriate CAP schema (by version) as well as pointing to
the CAP alert file.

What we will use now is an online CAP validator from Google.
This validator supports CAP versions 1.0, 1.1, and 1.2. It prompts you to
either paste the CAP XML directly into the text box or to use the upload
link (which will then prompt you to point to the CAP alert file on your local
system).

I will now run this validator using the CAP alert we just created.

So, we see that this CAP alert is well-formed XML and it is valid as CAP
version 1.1.

16

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 16

V
al

id

In case we don’t have live Internet for this presentation, here is a screen
shot showing the result from running the validator--the CAP alert is valid
(green box).

17

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 17

XML in CAP RSS News Feed

</item>
</channel>

</rss>

</pubDate>cap:sent<pubDate>

</guid>cap:identifier<guid>

</category>cap:cetgory<category>

</author>cap:sender<author>

</description>cap:description<description>

</title>cap:headline<title>

<rss version=“2.0”>
<channel>
<item>

Now let’s look at XML in CAP RSS News Feed.

In an RSS feed, the top level element is “rss” and it has a mandatory
version attribute.

Then, there is a single sub-element: “channel”.

The channel may contain any number of <item> sub-elements.

We can regard a source of CAP alerts as an RSS channel and each RSS
item corresponds to one CAP alert.

For the RSS item/title, we can use cap:headline.

For the RSS item/description, use cap:description

For item/author, use cap:sender

For item/category, use cap:category

For the item/guid, use cap:identifier

And, for the item/pubDate, use cap:sent.

18

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 18E
xa

m
pl

e
R

S
S

 fo
r

C
A

P
 A

le
rt

s

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">

<channel>
<title>Alerts Posted by ACMAD</title>
<link>http://www.acmad.org/alerts/rss.xml</link>
<description>Alerts posted by ACMAD (African Centre of Meteorological

Applications for Development)</description>
<language>en-us</language>
<copyright>public domain</copyright>
<pubDate>Fri, 14 Oct 2011 15:13:22 +0000</pubDate>
<docs>http://blogs.law.harvard.edu/tech/rss</docs>
<item>
<title>Geomagnetic Storm Alert</title>
<link>http://www.acmad.org/alerts/20111014150503.xml</link>
<description>There is likely to be a major geomagnetic storm and possible
auroral activity over the next few days. Space Weather sources at
NOAA/NASA indicate that major solar flares and a coronal mass ejection
(CME) were observed at 9:30 a.m. Eastern Time on June 6.</description>
<author>echristian@usgs.gov</author>
<category>Met</category>
<guid>http://www.acmad.org/alerts/20111014150503.xml</guid>
<pubDate>2011-10-14T15:05:03-00:00</pubDate>

</item>
</channel>

</rss>

Now here is an example of XML as it could be used with a CAP news
feed. In session CAP-106 we look at exactly how to create such an XML
file.

Here I am just showing a single item. Of course, a real news feed would
have multiple items, corresponding to multiple alerts.

19

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 19

ht
tp

://
ca

p-
va

lid
at

or
.a

pp
sp

ot
.c

om
/

Again we will use the online validator tool from Google. This time we will
validate the CAP RSS news feed.

The feed itself doesn’t receive any error messages, but the validation
process also tries to validate each of the CAP alerts. In this draft feed, the
alerts URLs are bogus, so that part fails.

20

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 20

Presentation Outline

103.1 Introducing XML Basics
103.2 Making Sure XML is Correct
103.3 Editing XML
103.4 Using CAP 1.1 Data Dictionary
103.5 Advanced Topics in XML

Going back to the presentation outline, we see the next topic is titled:

Editing XML

21

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 21

White Space, New Lines, and Comments

• In HTML, “white space” displays as an empty
space but may contain a series of spaces,
tabs, and new line characters

• In XML, white space is preserved
(content characters are not replaced)

• Avoid copying any non-displayable character
into an XML text element

• XML uses just “line feed” for new line,
not “carriage return/line feed” (Windows)
(see http://en.wikipedia.org/wiki/Newline)

• Comments in XML are as in HTML:
<!-- This is a comment -->

The term “white space” has a special meaning in markup languages such
as XML. In HTML, for instance, white space refers to certain characters
that render as empty space on a display: not only a series of spaces but a
tab, a line feed and a carriage return as well.

It is important to note that white space is preserved in XML. Unlike
HTML, content characters are not replaced by a space character. You
should also note that what appears to be a space as seen on your
computer screen may be instead a non-displayable character.

Let’s say you are filling out a text element in CAP alert form and you copy
some text from another document open on your desktop. If that text
contains non-displayed characters, then you have just dropped hidden
garbage into the CAP element. This can cause the XML to fail validation,
or strange characters may be displayed when the alert is later viewed by
someone else.

One way to minimize editing problems is to constantly display any white
space characters in the text. You can also get freeware tools such as
“Pure Text” that specifically strip non-displayed characters from the
scratch pad so you can paste just clean text.

As you may know, computer applications have very confused ways of
dealing with the “new line” commonly used to separate lines or close a
section of text. Microsoft Windows codes a new line as a pair of
characters: carriage return (CR) and line feed (LF), much like an old
manual typewriters. Other applications use only a line feed character for a
new line and that is the case for XML also. Further technical discussion on
this is at http://en.wikipedia.org/wiki/Newline

We should note also that you can have comments in XML as you would in
HTML: <!-- This is a comment --> Note: no comment is allowed to
precede the XML declaration, which must be the first line.

22

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 22

Entity References

Five characters have a special meaning
to the XML parser. If you need to use one
of them, substitute its entity reference:

quotation mark""

apostrophe''

ampersand&&

greater than>>
less than<<

A few characters have a special meaning in XML and you need
to take care to “escape” them with an entity reference instead.

As we’ve seen, XML tags are formed by using the left and right angle
brackets (< and >), also known as the “less than” symbol
and the “greater than” symbol.

The XML parser will give an error if the left angle bracket is used
anywhere else in the uncommented part of an XML document.
If you do have text where the “less than” symbol must occur, you need to
substitute for it the corresponding “entity reference”: <

There are four other predefined entity references that usually substituted
in an XML document to avoid confusion over their special meaning to the
XML parser: > for the “>” greater than symbol, & for the “&”
ampersand, ' “‘” for the apostrophe, and " for the double
quotation mark.

23

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 23

Taking Care with Encoding

• All XML parsers must support Unicode
“UTF-8” and “UTF-16” encodings

• Use encoding=“UTF-8” and always save
XML file using “save as” and “UTF-8”
(applies to programs that modify XML too)

Encoding issues are common in dealing with XML. When attempting to
load an XML file with a browser, for instance, you can get an invalid
character error message.

I recommend that you always use UTF-8 (or UTF-16 if necessary for your
natural language). All XML parsers are required to support Unicode “UTF-
8” and “UTF-16”.

In the first line of your XML, always specify encoding=“UTF-8”. Always
save the XML file using “save as” and “UTF-8”.

This applies also to program code that may modify any XML files.

24

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 24

XML Editor Tools

• You can edit XML with a text editor
such as NotePad and XML Notepad

• Integrated Development Environments
(e.g., MS Visual Studio, Eclipse)
typically include an XML editor

• A comparison of XML Editing tools:
http://en.wikipedia.org/wiki/

Comparison_of_XML_editors

Most people dealing with CAP will not see the raw XML but will handle
CAP alert information through a form. In the rare event
they may need to edit the CAP XML directly, they can use a text editor
such as regular NotePad or XML Notepad.

Developers and some others dealing with CAP may need to handle XML
more often or more deeply. In those cases, it makes sense
to have an editing tool specifically designed for XML.

An integrated development environment (including freeware such
as Visual Studio or Eclipse) typically supports XML editing. But,
that might be overkill for those with simple XML editing needs.

There are some freeware tools for XML editing. At minimum,
an XML editing tool should provide syntax highlighting so as
to differentiate element content from tags (as we saw in the
Internet Explorer browser view of a CAP alert.)

There are also some quite pricey XML editing tools. One of the
most popular is “XML Spy” but you can compare that and others online--
see, for example:

http://en.wikipedia.org/wiki/Comparison_of_XML_editors

25

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 25

Presentation Outline

103.1 Introducing XML Basics
103.2 Making Sure XML is Correct
103.3 Editing XML
103.4 Using CAP 1.1 Data Dictionary
103.5 Advanced Topics in XML

Our next topic concerns
Using the CAP 1.1 Data Dictionary

The Data Dictionary is a document for human readers. It provides
an understandable description of the element of a CAP message,
relationships among elements, and any value constraints on the
elements.

If you were to look at the corresponding CAP XML Schema, you would
find that the schema actually enforces many of the element relationships
and value constraints. But, the schema has only part
of the information given in the data dictionary, and an XML schema is
designed for machine processing rather than human readers.

When a CAP message fails validation, the cause is usually a violation of
XML Schema constraints. But, it is a good idea to
also check the Data Dictionary whenever you see an unfamiliar value in a
CAP element.

The data dictionary notes overall that CAP elements MAY have
null values, unless null values are specifically prohibited for an element.
(This is typical of XML—that a value can be empty or “null”.) Implementers
MUST check for this condition wherever
it might affect application performance.

The data dictionary starts on page 11 in the CAP 1.1 standard
specification document. It is presented as a table with four columns.

26

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 26

C
A

P
 D

at
a

D
ic

tio
na

ry
 (

p.
11

)

The first column has the name of the element.
Then there is given the formal construction of the element,
following the style given in ISO 11179 (Metadata Registries).
The third column gives the definition of the element. In parentheses the
dictionary notes whether this element is mandatory or optional. The fourth
column provides any additional notes about usage of the element. In
particular, this is where you would find the allowed values and constraints
on the coding of the values in the element.

The first element described has the name “alert”. It is REQUIRED in every
CAP message and is the container for all component parts of the alert
message. Here we also see that MUST include the xmlns attribute. As we
know, the alert elements MAY contain one or more “info” sub-elements.

The first five sub-elements are REQUIRED in every CAP alert message.
First we see the element named identifier and note
that this value must uniquely identify the message. The value of the
identifier element MUST NOT include spaces, commas or restricted
characters.

Next we see the element sender, which is guaranteed to be unique
globally (and is often an e-mail address). The value of the sender element
also MUST NOT include spaces, commas or restricted characters.

The third sub-element is the CAP alert sent time. The value of this
element must be represented in [dateTime] format (e. g., "2002-05-
24T16:49:00-07:00" for 24 May 2002 at 16: 49 Pacific Daylight Time
(West coast of continental U.S.). It is also noted that timezone designators
such as "Z" MUST NOT be used. Instead the zero offset from UTC is
used, that is: "+00:00“ is the offset.

27

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 27

C
A

P
 D

at
a

D
ic

tio
na

ry
 (

p.
12

)

Here are data dictionary entries for the elements status"and msgType,
two more of the first five required sub-elements.

The required element "status" denotes appropriate handling
of the alert message. It has five allowed values: "Actual",
"Exercise", "System", "Test", and "Draft".

The required element "msgType" also has five allowed values: "Alert",
"Update", "Cancel", "Ack" (for "acknowledge receipt“),
and "Error".

Next we see the optional element named "source“ of type “text”.

28

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 28

C
A

P
 D

at
a

D
ic

tio
na

ry
 (1

2-
13

)

Now we see another REQUIRED element, scope. This element denotes
the intended distribution. It has three allowed values: "Public",
"Restricted", and "Private".

If the value of scope is "Restricted“, then there must be a value in the next
element restriction. That is why the “optionality” is conditional rather than
mandatory or optional.

If the value of scope is “Private“, then there must be a value in the next
element addresses. Each addresses is separated from the next by a
space.

29

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 29

C
A

P
 D

at
a

D
ic

tio
na

ry
 (1

3-
14

)

The next element is code, an optional text element that can occur multiple
times within its parent info element.

Then we have the optional element named note. This element is intended
for use with Cancel and Error messages alerting about the cancellation of
an earlier message or an error in an earlier message.

The element named references is where we are able to identify the
earlier message being referenced, such as those being cancelled or being
alerted as erroneous. In the references element, such an earlier message
is identified by stringing together with commas the values of sender,
identifier and sent in the those earlier messages.
If there is more than one earlier message being referenced, those
references must be separated from each other by a space.

Now we see the element named incidents. This too is a grouping that
can have multiple incident references, separated by a space.

30

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 30

Structure of a CAP Message

<alert> top-level element
• may contain zero or

multiple <info> “blocks”
– may contain zero or

multiple <resource>
– may contain zero or

multiple <area>

Let’s keep in mind the overall structure of a CAP alert message.

As represented in XML, the message always has an alert top-level
element and we’ve just seen that there are several sub-elements available
(some required and some optional).

We have seen that a CAP alert message may also contain info “blocks”.
Let me point out that the term “block” is just an informal word for a
grouping container which in XML is more properly simply another
“element”.

Later, we’ll look at how any info block may contain zero or multiple
<resource> elements and zero or multiple <area> elements as well.

31

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 31

C
A

P
 D

at
a

D
ic

tio
na

ry
 (

p.
14

)

You can have make multiple info elements, as we have seen already.

The info element is optional, so it is valid in a CAP alert message to not
have any info element.

There is a note here in the data dictionary about the handling of multiple
languages across multiple info elements:
"If targeting of multiple "info" blocks in the same language overlaps,
information in later blocks may expand but may not override the
corresponding values in earlier ones. Each set of ‘info’ blocks containing
the same language identifier SHALL be treated as a separate sequence."

32

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 32

C
A

P
 D

at
a

D
ic

tio
na

ry
 (1

4-
15

)

And now we see the language sub-element for the info element. The
value in this element must be one of the common Internet language
designators given in RFC 3066.

For instance, “en” indicates English while “fr” indicates French. Also, “en-
US’ indicates English as used in the United States and “fr-CA” indicates
French as used in Canada. There is an implicit default value of "en-US" in
cases where this sub-element is missing or it has a null value (“is empty”).

The next element is named category. The element is required and there
can be multiple instances. In each instance, the value of this element is
restricted to be one of the following codes:

Geo, Met, Safety, Security, Rescue, Fire,
Health, Env, Transport, Infra, CBRNE, Other

33

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 33

C
A

P
 D

at
a

D
ic

tio
na

ry
 (1

5-
16

)

The event sub-element within the info block is required. Its text value is to
be descriptive of the type of event being alerted.

The event value can be any text, but you may find that CAP Profiles
provide suggested or required values.

Next we see responseType, an optional element with a fixed set of code
values. The element can have multiple instances and each instance would
be one of these codes:

Shelter, Evacuate, Prepare, Execute, Monitor, Assess, None

Note that the “Assess” value SHOULD NOT be used in public warning
applications.

34

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 34

C
A

P
 D

at
a

D
ic

tio
na

ry
 (1

6-
17

)

The next three elements are required: “urgency”, “severity”, and
“certainty”. Collectively, these elements are to distinguish less emphatic
from more emphatic messages.

There are five allowed code values in each of these three elements.

These are the code values for urgency:

Immediate, Expected, Future, Past, Unknown

The code values for severity are:

Extreme, Severe, Moderate, Minor, Unknown

And, the code values for certainty are:

Observed, Likely, Possible, Unlikely, Unknown

It is also noted in CAP versions 1.1 and 1.2 that the deprecated value of
“Very Likely” SHOULD be treated as equivalent to “Likely” for compatibility
with version 1.0.

35

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 35

C
A

P
 D

at
a

D
ic

tio
na

ry
(1

7-
18

)

Here we see the optional text element audience, which would be
descriptive of the intended audience of the alert message.

Next we have the optional element named eventCode.
The value of each instance of this repeatable element
is given in a “name-value” format.

To represent a named code and the value of that named
code, it is necessary to use two sub-elements: valueName
and value. Here is what that looks like:

<eventCode>

<valueName>valueName</valueName>

<value>value</value>

</eventCode>

It is also noted that the named code within valueName should
be in All Capital letters if it is an “initialism” or acronym.

36

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 36

C
A

P
 D

at
a

D
ic

tio
na

ry
(1

8-
19

)

The next three elements, effective, onset, and expires are all optional
and they are all in [dateTime] format, described earlier.

There is a note saying that if the effective value is not present, then the
effective time of the alert shall be assumed to be the same as the value in
the sent element (which is required to have a value).

There is no assumption made in the absence of an onset value.

If there is value for the expires element, the note says the recipient is free
to “set its own policy as to when the message is no longer in effect”.

37

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 37

C
A

P
 D

at
a

D
ic

tio
na

ry
 (

p.
19

)

Here we have four optional elements, each intended to provide human-
readable text.

The value of the element named originator is defined to contain
the name of the agency or authority issuing this alert.

There is a note about the length of the value in the headline element. It
says the headline SHOULD be made as direct and actionable as possible
while remaining short. The length should
be always less than 160 characters, in some cases less than 90
characters. It is also noted that some device displays may present only
this value when alerting.

The value of the element named description is defined to contain
a description of the hazard or event that occasioned this message.

The value of the element named instruction is defined to contain the
recommended action to be taken by recipients of the alert message . It is
also noted that multiple info blocks are to be
used when different instructions are intended for multiple recipients.

38

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 38

C
A

P
 D

at
a

D
ic

tio
na

ry
 (

p.
20

)

The next element is named web. This optional element points to
additional or reference information regarding this alert. If present,
the value must be formatted as an "absolute" URI (that is, use of
a "relative" URI is not valid).

Then we have the optional element named contact. Its value has
text describing the contact for follow-up and confirmation of the
alert message.

The optional element named parameter provides in each instance
a name-value pair encoding some kind of parameter associated
with the alert message.

To represent a named code and the value of that named
code, it is necessary to use two sub-elements: valueName
and value. Here is what that looks like:

<parameter>

<valueName>valueName</valueName>

<value>value</value>

</parameter>

It is noted here also that the named code within valueName should
be in All Capital letters if it is an “initialism” or acronym.

39

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 39

Structure of a CAP Message

<alert> top-level element
• may contain zero or

multiple <info> “blocks”
– may contain zero or

multiple <resource>
– may contain zero or

multiple <area>

Again, here is the overall structure of a CAP alert message.

Now we are inside of the definition of an info block.

Let’s look at the CAP data dictionary definition of the resource element.

40

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 40

C
A

P
 D

at
a

D
ic

tio
na

ry
(p

. 2
1)

The optional grouping element named resource acts as the container for
further sub-elements. An alert message may have multiple resource
elements within the info block.

If there is a resource element, it will always contain at least the required
element named resourceDesc. Its text value describes
the type and content of the resource file, such as 'map' or 'photo'.

Also defined within the info/resource element is the optional element
named mimeType. (MIME originated as Multipurpose Internet Mail
Extensions). The value of the resource element identifies the MIME
content type and sub-type describing the resource file. These MIME types
are as defined [RFC 2046] and registered through IANA (Internet
Assigned Number Authority).

41

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 41

C
A

P
 D

at
a

D
ic

tio
na

ry
 (2

1-
22

)

Also within the info/resource element we find the optional element named
size. Its value is an integer indicating the approximate size
of the resource file in bytes.

Next within info/resource is the optional element named uri.
Its value identifies the hyperlink for the resource file, given as an URI.
Typically, the value is an absolute URL (Uniform Resource Locator) that
can be used to retrieve the resource over the Internet. Its value can also
be a relative URI naming the content of a derefUri element if one is
present in this resource block.

Next is the conditional element named derefUri, which is short
for “de-referenced URI”. The idea here is that it is useful for an
alert to include some information that would usually be accessed
via a URI pointing to a resource such as a photo, video, map, etc.
If the alert recipient can access that referenced resource, then it is
sufficient to provide the URI that points to it. However, when alert
recipients cannot use a URI to obtain the referenced information, then the
content must be embedded in the alert itself. This is commonly the case
with one-way (e.g., broadcast) data links.

There are further notes in the CAP data dictionary concerning
use of this element, but we’ll not cover those in the presentation.

I will move now to the optional element named digest. Its value
represents the digital digest ('hash') computed from the resource
file using the Secure Hash Algorithm (SHA-1) per FIPS 180-2.

42

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 42

Structure of a CAP Message

<alert> top-level element
• may contain zero or

multiple <info> “blocks”
– may contain zero or

multiple <resource>
– may contain zero or

multiple <area>

We are still inside the definition of an info block.

Now we can finish up by looking at how the CAP data dictionary defines
the area element.

43

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 43

C
A

P
 D

at
a

D
ic

tio
na

ry
 (2

3-
24

)

Next is the optional grouping element named area. It acts as the container
for further sub-elements and an alert message may have multiple area
elements within the info block. If there are multiple area elements, it is
noted that the target area for the info blocks is the union of all the included
<area> blocks, which themselves may be multiple instances of polygon,
circle or geocode.

Within the info/area element, we always find an element named
areaDesc. This element is required if the alert message contains
an area element. Its value, in human-readable text, describes the affected
area of the alert message.

The area can be further described by the optional element named
polygon, and there can be multiple polygons within an info/area block. Its
value contains coordinates at the points of a polygon surrounding the
affected area of the alert message. Each point is given as a coordinate
pair, in the form of latitude (comma) longitude. Each coordinate is stated
in decimal degrees, signed negative in the Western and Southern
hemispheres. A space separates each point (each pair of coordinates).
Also, the first and last pairs of coordinates MUST be the same, which is to
say the polygon must be closed.

There is also the optional element named circle, delineating
the affected area of the alert message. There can be multiple
circles within an info/area block, and each instance of a circle
is represented as the paired value of a center point and a radius. The
center point is a coordinate, in latitude (comma) longitude
form as just described. A space follows the center point and that
is followed by the radius value, in kilometers.

44

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 44

C
A

P
 D

at
a

D
ic

tio
na

ry
 (2

4)

Also within the info/area element is the optional element named geocode,
which can occur multiple times. Each instance gives a geographically-
based code describing the message target area.
As we have seen before, it is necessary to use two sub-elements
(valueName and value) to represent a named code and the value
of that named code. Here is what it looks like:

<geocode>

<valueName>valueName</valueName>

<value>value</value>

</geocode>

It is noted here also that the named code within valueName should
be in All Capital letters without periods if they are acronyms (initialisms).

It is noted use of the geocode element presumes that recipients have
knowledge of the coding system. The note states that geocode SHOULD
be used in concert with an equivalent description in the more universally
understood <polygon> and <circle> forms.

The next element is also optional and is named altitude. Its value gives
the altitude in feet above mean sea level for the affected space of the alert
message. If altitude is used with the ceiling element, the value in altitude
is the lower limit of a range. Otherwise, the value specifies a specific
altitude.

The last element defined in the CAP data dictionary is named ceiling and
it is only used in combination with the altitude element. Its value gives the
maximum altitude of the vertical range of the affected space of the alert
message. It too is expressed in feet above mean sea level.

45

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 45

C
A

P
 D

oc
um

en
t

O
bj

ec
t M

od
el

Now we have looked at all of the elements in CAP version 1.1.

The full set of elements may seem complicated, but a CAP message in
practice can be simple and most alerts are likely straightforward.

In the extreme case, a valid CAP alert can have as few as just the six
required elements (with no info block).

46

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 46

Presentation Outline

103.1 Introducing XML Basics
103.2 Making Sure XML is Correct
103.3 Editing XML
103.4 Using CAP 1.1 Data Dictionary
103.5 Advanced Topics in XML

The last topic of this session will introduce some

Advanced Topics in XML

47

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 47

X
M

L
V

ie
w

ed
 w

ith
 a

 B
ro

w
se

r

Here is the CAP alert as visitors might see it, in its “raw XML” form.

If the XML were not well-formed, the visitor would get an error. Otherwise,
a visitor using Microsoft Internet Explorer sees a
well-formed XML document displayed with color-coding that differentiates
the XML tags from the element values.

The structure is handled using a plus or minus sign to the left
of the elements. These can be clicked to expand or collapse
the element structure.

A visitor using Safari would see only the element values.
To view the raw XML, the visitor would have to right click
and select "View Source“.

Clearly, the raw XML is not what you want your Web site
visitors to see.

48

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 48

A
le

rt
 w

ith
 S

ty
le

sh
ee

t

http://www.usgs.gov/hazard_alert/alerts/cap_alert.xsl

To make a CAP alert easier for a human visitor to read, we
add a line to the CAP alert to reference an XML Stylesheet,
called “XSLT”.

XSLT allows us to transform an XML document into HTML. Yet,
the XML representation is still there so it can used by other processes,
such as alert aggregators, text-to-speech processors, and so on.

Here I’ve applied a USGS stylesheet that I wrote years ago.
You can see this makes the CAP alert nicely formatted for
users who see the alert through a Web browser.

We don’t have time to cover the creation of XML spreadsheets
in this course, but you may find it’s not too hard to use this
example and customize it for your own site.

49

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 49

C
A

P
 D

oc
um

en
t

O
bj

ec
t M

od
el

Ideally, a stylesheet should anticipate all of the CAP elements defined in
the XML Schema for the CAP version you are using.

Here again is a simplified view of the CAP Document Object
Model, showing just the overall structure and the names of
defined elements.

Now we’ll look at how the Document Object Model is used at
the programming level.

50

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 50

Using the DOM (Document Object Model)

• XML DOM defines objects, properties, and methods
• XML document becomes a tree-structure of nodes

(all elements, their values, and their attributes)
• All DOM nodes can be added, modified or deleted.
• XML parser reads XML document and loads the DOM
• Example: getElementsByTagName() method

xmlDoc=loadXMLDoc(“capAlert.xml");
identifierNodes=xmlDoc.getElementsByTagName(“identifier");
identifierNode=identifierNodes.childNodes[0];
identifierText=identifierNode.nodeValue;

• Tutorial on XML DOM:
http://www.w3schools.com/dom/default.asp

The XML DOM (Document Object Model) defines a standard way
for accessing and manipulating an XML document. It defines the objects
and properties of all XML elements, and the methods (interface) to
access them.

The DOM treats the XML document as a tree-structure with all elements,
their values, and their attributes referenced as “nodes”.
All DOM nodes can be accessed and new elements can be inserted.
Values of text and attributes of elements can be modified or deleted.

First, an XML parser needs to read an XML document and load it into an
XML DOM object. Most browsers have a built-in XML parser and it
produces an XML DOM that can be accessed with JavaScript.

For example, the getElementsByTagName() method returns a node list
containing all elements with the specified tag name, in the same order as
they appear in the source document.

Here we load the DOM: xmlDoc=loadXMLDoc(“capAlert.xml");
Then we get all of the nodes tagged as “identifier”
identifierNodes=xmlDoc.getElementsByTagName(“identifier");

We know identifier is required and there must be only one, so:
identifierNode=identifierNodes.childNodes[0];
Now we have the entire identifier element, including nodes for its tag, its
attributes, its children, its siblings, its parent, and so on.
The node we want to get now is its text value, so we code:
identifierText=identifierNode.nodeValue;

If you have done any programming, navigating a DOM is fairly intuitive,
although there are certainly some tricks to be learned.

We don’t have time in this session to further explore the XML DOM. There
is a tutorial on this topic at www.w3schools.com/dom

51

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 51

Understanding XML Namespaces

• XML Namespaces avoid element name
conflicts, e.g., both CAP and RSS define
a “description” element tag

• “xmlns” attribute provides for a name
prefix (e.g., “cap:description”)

• CAP specification requires namespace
attribute in the “alert” root element, e.g.,
<alert xmlns="urn:oasis:names:tc:emergency:cap:1.1">
or

<cap:alert xmlns:cap="urn:oasis:names:tc:emergency:cap:1.1">

• RSS specification requires its elements
to be in the “default namespace”

XML Namespaces provide a method to avoid element name conflicts—a
situation where a tag name in an XML document
would have multiple definitions because that tag was used in different
schemas that the document draws content from.

For instance, we see that CAP has a “description” element tag
and RSS also has a “description” element tag.

To tell them apart, we can put a separate name prefix on the
cap tags, following the XML Namespaces rules. The tag would become
“cap:description”.

Of course, the XML parser needs to be told about this name
prefix. We accomplish that with the “xmlns” attribute.

The CAP specification has a specific requirement about the namespace
attribute. For the “alert” element, the specification
says that it “MUST include the xmlns attribute referencing the
CAP URN as the namespace, e.g.:
<alert xmlns="urn:oasis:names:tc:emergency:cap:1.1"> or

<cap:alert xmlns:cap="urn:oasis:names:tc:emergency:cap:1.1">

In the case of the RSS specification, the requirement is that RSS
elements use the “default namespace”. That is, the RSS tags do not have
a namespace prefix.

In an RSS document, you can include any other elements you like as long
as you provide an appropriate namespace attribute and use the
corresponding prefixes.

52

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 52

Review of Key Points

• Introducing XML Basics

• Making Sure XML is Correct

• Editing XML

• Using CAP 1.1 Data Dictionary

• Advanced Topics in XML

Review of Key Points

• Introducing XML Basics

• Making Sure XML is Correct

• Editing XML

• Advanced Topics in XML

• Sharing News Feeds across Organizations

53

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 53

What have you learned?

1. Explain what is XML and where the definitions
of CAP elements are found.

2. Describe how elements contain other elements, such
as the CAP headline sub-element of the info element.

3. Explain the basics of creating and validating a CAP
alert according to XML syntax and a specific version
schema.

4. Distinguish among the XML for a CAP alert and the
XML for an RSS news feed pointing to CAP alerts.

5. Explain why it would be useful for a Web site to
include a customized stylesheet for its CAP alerts.

What have you learned?

1. Explain what is XML and where the definitions
of CAP elements are found.

2. Describe how elements contain other elements, such
as the CAP headline sub-element of the info element.

3. Explain the basics of creating and validating a CAP alert
according to XML syntax and a specific version schema.

4. Distinguish among the XML for a CAP alert and the
XML for an RSS news feed pointing to CAP alerts.

5. Explain why it would be useful for a Web site to
include a customized stylesheet for its CAP alerts.

54

CAP-103 XML for CAP Implementors

CAP 103 - XML for CAP Implementors 54

Reference Links

• XML Tutorial by w3schools.com
• CAP Information Site by WMO

Public Weather Services (PWS)

• WMO PWS CAP Jump Start Offer

• OASIS Emergency Management
Technical Committee

• International Register of Alerting Authorities

• Google Public Alerts

• Intro to CAP (10-minute video) YouTube FTP

Here are some key reference links concerning CAP.

This concludes my presentation. Thank you for your attention.

This document was created with the Win2PDF “print to PDF” printer available at
http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/

